نتایج جستجو برای: vladimir nabokov
تعداد نتایج: 2285 فیلتر نتایج به سال:
We elaborate upon incremental modeling techniques for ASP Planning, a term coined by Vladimir Lifschitz at the end of the nineties. Taking up this line of research, we argue that ASP needs both a dedicated modeling methodology and sophisticated solving technology in view of the high practical relevance of dynamic systems in real-world applications.
Vladimir Sorin1,*, Aya Mizrahi2, Patricia Ohana2, Suhail Ayesh2, Tatiana Birman2, Abraham Hochberg2, Abraham Czerniak1 Department of Surgery “A”, E.Wolfson Medical Center, Holon, Israel Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel __________________________________________________________________________________ *Correspon...
Title: HIF2α targeted RNAi therapeutic inhibits clear cell renal cell carcinoma Authors and affiliations: So C. Wong, Weijun Cheng, Holly Hamilton, Anthony L. Nicholas, Darren H. Wakefield, Aaron Almeida, Andrei V. Blokhin, Jeffrey Carlson, Zane C. Neal, Vladimir Subbotin, Guofeng Zhang, Julia Hegge, Stephanie Bertin, Vladimir S. Trubetskoy, David B. Rozema, David L. Lewis, Steven B. Kanner 1. ...
Title: HIF2α targeted RNAi therapeutic inhibits clear cell renal cell carcinoma Authors and affiliations: So C. Wong, Weijun Cheng, Holly Hamilton, Anthony L. Nicholas, Darren H. Wakefield, Aaron Almeida, Andrei V. Blokhin, Jeffrey Carlson, Zane C. Neal, Vladimir Subbotin, Guofeng Zhang, Julia Hegge, Stephanie Bertin, Vladimir S. Trubetskoy, David B. Rozema, David L. Lewis, Steven B. Kanner 1. ...
Minimization in circumscription has focussed on minimizing the extent of a set of predicates (with or without priorities among them), or of a formula. Although most circumscription formalisms allow varying of functions and other constants, no formalism to the best of our knowledge minimized functions. In this paper we introduce and motivate the notion of value minimizing a function in circumscr...
In this paper we give a direct proof of the fact that for any schemes of finite type X , Y over a Noetherian scheme S the natural map of presheaves with transfers Hom(Ztr(X),Ztr(Y )) → Hom(Ztr(X)⊗tr Gm,Ztr(Y )⊗tr Gm) is a (weak) A-homotopy equivalence. As a corollary we deduce that the Tate motive is quasi-invertible in the triangulated categories of motives over perfect fields. 2010 Mathematic...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید