نتایج جستجو برای: winkler pasternak elastic foundation

تعداد نتایج: 162063  

F Aghadavoudi, M Mirzaalian R Moradi-Dastjerdi

The main aim of this paper is to investigate bending behavior in sandwich plates with functionally graded carbon nanotube reinforced composite (FG-CNTRC) face sheets with considering the effects of carbon nanotube (CNT) aggregation. The sandwich plates are assumed resting on Winkler-Pasternak elastic foundation and a mesh-free method based on first order shear deformation theory (FSDT) is devel...

Journal: :Journal of the Computational Structural Engineering Institute of Korea 2016

Free vibration of a simply-supported magneto-electro-elastic doubly-curved nano-shell is studied based on the first-order shear deformation theory in the presence of the rotary inertia effect. To model the electric and magnetic behaviors of the nano-shell, Gauss’s laws for electrostatics and magneto statics are used. By using Navier’s method, the partial differential equations of motion are red...

A Ghorbanpour Arani, A Hafizi Bidgoli A Karamali Ravandi M.A Roudbari M.B Azizkhani

In this study, a semi analytical method for transverse and axial vibration of single-walled boron nitride nanotube (SWBNNT) under moving a nanoparticle is presented. The surrounding elastic medium as Pasternak foundation and surface stress effect are included in the formulations of the proposed model. Using Timoshenko beam theory (TBT), Hamilton’s principle and nonlocal piezoelasticity theory, ...

A Ghorbanpour Arani, A.A Ghorbanpour Arani M.H Jalaei S Niknejad

This paper discusses static and dynamic response of nanoplate resting on an orthotropic visco-Pasternak foundation based on Eringen’s nonlocal theory. Graphene sheet modeled as nanoplate which is assumed to be orthotropic and viscoelastic. By considering the Mindlin plate theory and viscoelastic Kelvin-Voigt model, equations of motion are derived using Hamilton’s principle which are then solved...

A Mirzabeigy M Haghpanahi R Madoliat,

In this study, the buckling and free vibration of Timoshenko beams resting on variable elastic foundation analyzed by means of a new finite element formulation. The Winkler model has been applied for elastic foundation. A two-node element with four degrees of freedom is suggested for finite element formulation. Displacement and rotational fields are approximated by cubic and quadratic polynomia...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید