نتایج جستجو برای: autoregressive integrated moving average arima
تعداد نتایج: 737312 فیلتر نتایج به سال:
This article investigates a Cautious Minimum Variance (CMV) control approach for controlling industrial process variability when the model parameters are estimated from data and subject to uncertainty. CMV control has a number of advantages over traditional robust control methods. It incorporates probabilistic, as opposed to deterministic, measures of parameter uncertainty, which are more consi...
In this exploratory study, the authors examined the dynamics of self-esteem in 8 adults over a 6-month period. Each participant (M age = 29.4 years, SD = 7.9, SEM = 2.8) completed a single item from the Physical Self Inventory (G. Ninot, M. Fortes, & D. Delignières, 2001) using a 10-cm visual analog scale (horizontal line), twice a day between 7:00 and 9:00 a.m. and between 7:00 and 9:00 p.m. T...
This paper outlines the practical steps which need to be undertaken to use autoregressive integrated moving average (ARIMA) time series models for forecasting Irish inflation. A framework for ARIMA forecasting is drawn up. It considers two alternative approaches to the issue of identifying ARIMA models the Box Jenkins approach and the objective penalty function methods. The emphasis is on forec...
We study the autocorrelation structure and the spectral density function of aggregates from a discrete-time process. The underlying discrete-time process is assumed to be a stationary AutoRegressive Fractionally Integrated Moving-Average (ARFIMA) process, after suitable number of differencing if necessary. We derive closed-form expressions for the limiting autocorrelation function and the norma...
Autoregressive integrated moving average (ARIMA) is one of the popular linear models in time series forecasting during the past three decades. Recent research activities in forecasting with arti/cial neural networks (ANNs) suggest that ANNs can be a promising alternative to the traditional linear methods. ARIMA models and ANNs are often compared with mixed conclusions in terms of the superiorit...
Energy consumption time series consists of complex linear and non-linear patterns and are difficult to forecast. Neither autoregressive integrated moving average (ARIMA) nor artificial neural networks (ANNs) can be adequate in modeling and predicting energy consumption. The ARIMA model cannot deal with nonlinear relationships while the neural network model alone is not able to handle both linea...
This paper outlines the practical steps which need to be undertaken to use autoregressive integrated moving average (ARIMA) time series models for forecasting Irish inflation. A framework for ARIMA forecasting is drawn up. It considers two alternative approaches to the issue of identifying ARIMA models the Box Jenkins approach and the objective penalty function methods. The emphasis is on forec...
In many intervention analysis applications, time series data may be expensive or otherwise difficult to collect. In this case the power function is helpful, because it can be used to determine the probability that a proposed intervention analysis application will detect a meaningful change. Assuming that an underlying autoregressive integrated moving average (ARIMA) or fractional ARIMA model is...
In this article, we forecast crude oil and natural gas spot prices at a daily frequency based on two classification techniques: artificial neural networks (ANN) and support vector machines (SVM). As a benchmark, we utilize an autoregressive integrated moving average (ARIMA) specification. We evaluate outof-sample forecast based on encompassing tests and mean-squared prediction error (MSPE). We ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید