نتایج جستجو برای: axon regeneration
تعداد نتایج: 79002 فیلتر نتایج به سال:
central nervous system axons fail to regenerate after spinal cord injury (sci), partially due to the accumulation of extracellular matrix molecules in the lesion and formation of the glial scar. depakine, as known as histone deacetylase inhibitor, has neuroprotective effects. this study evaluated the histological changes (cavitation and axon regeneration) after sci associated with (following ad...
The ability of injured axons to regenerate declines with age, yet the mechanisms that regulate axon regeneration in response to age are not known. Here we show that axon regeneration in aging C. elegans motor neurons is inhibited by the conserved insulin/IGF1 receptor DAF-2. DAF-2's function in regeneration is mediated by intrinsic neuronal activity of the forkhead transcription factor DAF-16/F...
Chondroitin sulfate proteoglycans (CSPGs) are upregulated after CNS lesions, where they inhibit axon regeneration. In order for axon growth and regeneration to occur, surface integrin receptors must interact with surrounding extracellular matrix molecules. We have explored the hypothesis that CSPGs inhibit regeneration by inactivating integrins and that forcing integrins into an active state mi...
Microtubules have been identified as a powerful target for augmenting regeneration of injured adult axons in the central nervous system. Drugs that stabilize microtubules have shown some promise, but there are concerns that abnormally stabilizing microtubules may have only limited benefits for regeneration, while at the same time may be detrimental to the normal work that microtubules perform f...
In the mammalian CNS, glial cells repel axons during development and inhibit axon regeneration after injury. It is unknown whether the same repulsive axon guidance molecules expressed by glia and their precursors during development also play a role in inhibiting regeneration in the injured CNS. Here we investigate whether optic nerve glial cells express semaphorin family members and, if so, whe...
It was traditionally thought that the central nerve system (CNS) defects the regenerated ability, following the injury. However, the peripheral nerve system (PNS) possesses an ability of regeneration after injury. Also it was found that the axon in CNS might extend into the graft, as soon as the peripheral nerve tissue was transplanted into the injured part of CNS. Therefore, it implied that th...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید