نتایج جستجو برای: chebyshev polynomial
تعداد نتایج: 100912 فیلتر نتایج به سال:
Permutable Chebyshev polynomials (T polynomials) defined over the field of real numbers are suitable for creating a Diffie-Hellman-like key exchange algorithm that is able to withstand attacks using quantum computers. The algorithm takes advantage of the commutative properties of Chebyshev polynomials of the first kind. We show how T polynomial values can be computed faster and how the underlyi...
We obtain a closed form of generating functions of RNA substructure using hermitian matrix model with the Chebyshev polynomial of the second kind, which turns out to be the hypergeometric function. To match the experimental findings of the statistical behavior, we regard the substructure as a grand canonical ensemble and find its fugacity value. We also suggest a hierarchical picture based on t...
This paper focuses on the construction of continuous approximation scheme for the solution of first order initial value problems in ordinary differential equations. We exploit here the elegant properties of the Chebyshev polynomials and derive from the continuous scheme, an implicit hybrid block method through some selected points. The self-starting method was implemented on three test problems...
For a fixed prime p, we consider the set of maps Z/pZ → Z/pZ of the form a 7→ Tn(a), where Tn(x) is the degree-n Chebyshev polynomial of the first kind. We observe that these maps form a semigroup, and we determine its size and structure.
Several authors have examined connections among restricted permutations, continued fractions, and Chebyshev polynomials of the second kind. In this paper we prove analogues of these results for involutions which avoid 3412. Our results include a recursive procedure for computing the generating function for involutions which avoid 3412 and any set of additional patterns. We use our results to gi...
We study generating functions for the number of permutations in S n subject to two restrictions. One of the restrictions belongs to S 3 , while the other belongs to S k. It turns out that in a large variety of cases the answer can be expressed via Chebyshev polynomials of the second kind.
We study generating functions for the number of involutions, even involutions, and odd involutions in Sn subject to two restrictions. One restriction is that the involution avoid 3412 or contain 3412 exactly once. The other restriction is that the involution avoid another pattern τ or contain τ exactly once. In many cases we express these generating functions in terms of Chebyshev polynomials o...
In 1969 Harold Widom published his seminal paper (Widom, 1969) which gave a complete description of orthogonal and Chebyshev polynomials on a system of smooth Jordan curves. When there were Jordan arcs present the theory of orthogonal polynomials turned out to be just the same, but for Chebyshev polynomials Widom’s approach proved only an upper estimate, which he conjectured to be the correct a...
We define a class of multivariate Laurent polynomials closely related to Chebyshev polynomials and prove the simple but somewhat surprising (in view of the fact that the signs of the coefficients of the Chebyshev polynomials themselves alternate) result that their coefficients are non-negative. As a corollary we find that Tn(c cos θ) and Un(c cos θ) are positive definite functions. We further s...
This note presents a Markov-type inequality for polynomials in two variables where the Chebyshev polynomials of the second kind in either one of the variables are extremal. We assume a bound on a polynomial at the set of even or odd Chebyshev nodes with the boundary nodes omitted and obtain bounds on its even or odd order directional derivatives in a critical direction. Previously, the author h...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید