نتایج جستجو برای: chinese remainder theorem

تعداد نتایج: 294222  

Journal: :International Journal of Grid and Distributed Computing 2016

Journal: :Int. J. Communication Systems 2014
Yanjun Liu Lein Harn Chin-Chen Chang

A group key distribution protocol can enable members of a group to share a secret group key and use it for secret communications. In 2010, Harn and Lin proposed an authenticated group key distribution protocol using polynomial-based secret sharing scheme. Recently, Guo and Chang proposed a similar protocol based on the generalized Chinese remainder theorem. In this paper, we point out that ther...

Journal: :I. J. Network Security 2013
Yanjun Liu Chin-Chen Chang Shih-Chang Chang

Because the t-out-of-n oblivious transfer (OT) protocol can guarantee the privacy of both participants, i.e., the sender and the receiver, it has been used extensively in the study of cryptography. Recently, Chang and Lee presented a robust t-out-of-n OT protocol based on the Chinese remainder theorem (CRT). In this paper, we use the Aryabhata remainder theorem (ART) to achieve the functionalit...

2013
David R. Wilkins

9 Introduction to Number Theory 63 9.1 Subgroups of the Integers . . . . . . . . . . . . . . . . . . . . 63 9.2 Greatest Common Divisors . . . . . . . . . . . . . . . . . . . . 63 9.3 The Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . 64 9.4 Prime Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 67 9.5 The Fundamental Theorem of Arithmetic . . . . . . . . . . . . 68 9....

2010
David R. Wilkins

5 Introduction to Number Theory and Cryptography 72 5.1 Subgroups of the Integers . . . . . . . . . . . . . . . . . . . . 72 5.2 Greatest Common Divisors . . . . . . . . . . . . . . . . . . . . 72 5.3 The Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . 73 5.4 Prime Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.5 The Fundamental Theorem of Arithmetic . . . . . . ...

2014
David R. Wilkins

9 Introduction to Number Theory 168 9.1 Subgroups of the Integers . . . . . . . . . . . . . . . . . . . . 168 9.2 Greatest Common Divisors . . . . . . . . . . . . . . . . . . . . 168 9.3 The Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . 169 9.4 Prime Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 172 9.5 The Fundamental Theorem of Arithmetic . . . . . . . . . . . . ...

2009
David R. Wilkins

8 Introduction to Number Theory and Cryptography 125 8.1 Subgroups of the Integers . . . . . . . . . . . . . . . . . . . . 125 8.2 Greatest Common Divisors . . . . . . . . . . . . . . . . . . . . 125 8.3 The Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . 126 8.4 Prime Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 129 8.5 The Fundamental Theorem of Arithmetic . . . ....

2007
David R. Wilkins

9 Introduction to Number Theory and Cryptography 1 9.1 Subgroups of the Integers . . . . . . . . . . . . . . . . . . . . 1 9.2 Greatest Common Divisors . . . . . . . . . . . . . . . . . . . . 2 9.3 The Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . 3 9.4 Prime Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 4 9.5 The Fundamental Theorem of Arithmetic . . . . . . . . ....

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید