نتایج جستجو برای: complex valued s metric space
تعداد نتایج: 1941643 فیلتر نتایج به سال:
Let (T,r,p) be a finite measure space, X be a Banach space, P be a metric space and let L,(y,X) denote the space of equivalence classes of X-valued Bochner integrable functions on (T, T, p). We show that if $I: T x P-2x is a set-valued function such that for each fixed p E P, 4(. , p) has a measurable graph and for each fixed TV T, 4(t;) is either upper or lower semicontinuous then the Aumann i...
recently, cho et al. [y. j. cho, r. saadati, s. h. wang, common xed point theorems on generalized distance in ordered cone metric spaces, comput. math. appl. 61 (2011) 1254-1260] dened the concept of the c-distance in a cone metric space and proved some xed point theorems on c-distance. in this paper, we prove some new xed point and common xed point theorems by using the distance in ordere...
When a class of fuzzy value functions constitute a metric space, the completeness and separability is an important problem that must be considered to discuss the approximation of fuzzy systems. In this paper, Firstly, a new tK-integral norm is defined by introducing two induced operators, and prove that the class of tK-integrable fuzzy value functions is a metric space. And then, the integral t...
The existence of fixed point in orthogonal metric spaces has been initiated by Eshaghi and et. al [7]. In this paper, we prove existence and uniqueness theorem of fixed point for mappings on $varepsilon$-connected orthogonal metric space. As a consequence of this, we obtain the existence and uniqueness of fixed point for analytic function of one complex variable. The paper concludes with some i...
Let (μn : n ≥ 0) be Borel probabilities on a metric space S such that μn → μ0 weakly. Say that Skorohod representation holds if, on some probability space, there are S-valued random variables Xn satisfying Xn ∼ μn for all n and Xn → X0 in probability. By Skorohod’s theorem, Skorohod representation holds (with Xn → X0 almost uniformly) if μ0 is separable. Two results are proved in this paper. Fi...
We show that every complete metric space is homeomorphic to the locus of zeros of an entire analytic map from a complex Hilbert space to a complex Banach space. As a corollary, every separable complete metric space is homeomorphic to the locus of zeros of an entire analytic map between two complex Hilbert spaces. §1. Douady had observed [8] that every compact metric space is homeomorphic to the...
It is well known that a microperiodic function mapping a topological group into reals, which is continuous at some point is constant. We introduce the notion of a microperiodic multifunction, defined on a topological group with values in a metric space, and study regularity conditions implying an analogous result. We deal with Vietoris and Hausdorff continuity concepts.Stability of microperiodi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید