نتایج جستجو برای: decision trees
تعداد نتایج: 422691 فیلتر نتایج به سال:
This paper describes experiments, on two domains, to investigate the effect of averaging over predictions of multiple decision trees, instead of using a single tree. Other authors have pointed out theoretical and commonsense reasons for preferring· the multiple tree approach. Ideally, we would like to consider predictions from all trees, weighted by their probability. However, there is a vast·n...
Many intelligent systems are designed to sift through a mass of evidence and arrive at a decision. Certain pieces of evidence may be given more weight than others, and this may aaect the nal decision signiicantly. When than one intelligent agent is available to make a decision, we can form a committee of experts. By combining the diier-ent opinions of these experts, the committee approach can s...
We present a new classification algorithm that combines three properties: It generates decision trees, which proved a valuable and intelligible tool for classification and generalization of data; it utilizes fuzzy logic, that provides for a fine grained description of classified items adequate for human reasoning; and it is incremental, allowing rapid alternation of classification and learning ...
This paper explores the problem of how to construct lazy decision tree ensembles. We present and empirically evaluate a relevancebased boosting-style algorithm that builds a lazy decision tree ensemble customized for each test instance. From the experimental results, we conclude that our boosting-style algorithm significantly improves the performance of the base learner. An empirical comparison...
As deep learning-based classifiers are increasingly adopted in real-world applications, the importance of understanding how a particular label is chosen grows. Single decision trees are an example of a simple, interpretable classifier, but are unsuitable for use with complex, high-dimensional data. On the other hand, the variational autoencoder (VAE) is designed to learn a factored, low-dimensi...
A new boosting algorithm of Freund and Schapire is used to improve the performance of decision trees which are constructed usin: the information ratio criterion of Quinlan’s C4.5 algorithm. This boosting algorithm iteratively constructs a series of decision tress, each decision tree being trained and pruned on examples that have been filtered by previously trained trees. Examples that have been...
As deep learning-based classifiers are increasingly adopted in real-world applications, the importance of understanding how a particular label is chosen grows. Single decision trees are an example of a simple, interpretable classifier, but are unsuitable for use with complex, high-dimensional data. On the other hand, the variational autoencoder (VAE) is designed to learn a factored, low-dimensi...
The inductive learning methodology known as decision trees, concerns the ability to classify objects based on their attributes values, using a tree like structure from which decision rules can be accrued. In this article, a description of decision trees is given, with the main emphasis on their operation in a fuzzy environment. A first reference to decision trees is made in Hunt et al. (1966), ...
We introduce a complexity measure for decision trees called the soft rank, which measures how wellbalanced a given tree is. The soft rank is a somehow relaxed variant of the rank. Among all decision trees of depth d, the complete binary decision tree (the most balanced tree) has maximum soft rank d, the decision list (the most unbalanced tree) has minimum soft rank √ d, and any other trees have...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید