نتایج جستجو برای: dirac operator
تعداد نتایج: 110203 فیلتر نتایج به سال:
In this work, we consider the deforming of a G2 structure by a vector field on a 7−manifold. To obtain the metric corresponding to deformed G2 structure, a new map is defined. By using this new map, the covariant derivatives on associated spinor bundles are compared. Then, the relation between Dirac operators on spinor bundles are investigated under some restrictions.
The Overlap-Dirac operator provides a lattice regularization of massless vector gauge theories with an exact chiral symmetry. Practical implementations of this operator and recent results in quenched QCD using this Overlap-Dirac operator are reviewed.
A novel feature of a Ginsparg-Wilson lattice Dirac operator is discussed. Unlike the Dirac operator for massless fermions in the continuum, this lattice Dirac operator does not possess topological zero modes for any topologically-nontrivial background gauge fields, even though it is exponentially-local, doublers-free, and reproduces correct axial anomaly for topologically-trivial gauge configur...
We consider Khudaverdian's geometric version of a Batalin-Vilkovisky (BV) operator ∆ E in the case of a degenerate anti-Poisson manifold. The characteristic feature of such an operator (aside from being a Grassmann-odd, nilpotent, second-order differential operator) is that it sends semi-densities to semidensities. We find a local formula for the ∆ E operator in arbitrary coordinates. As an imp...
We consider Khudaverdian's geometric version of a Batalin-Vilkovisky (BV) operator ∆ E in the case of a degenerate anti-Poisson manifold. The characteristic feature of such an operator (aside from being a Grassmann-odd, nilpotent, second-order differential operator) is that it sends semi-densities to semidensities. We find a local formula for the ∆ E operator in arbitrary coordinates. As an imp...
We consider Khudaverdian's geometric version of a Batalin-Vilkovisky (BV) operator ∆ E in the case of a degenerate anti-Poisson manifold. The characteristic feature of such an operator (aside from being a Grassmann-odd, nilpotent, second-order differential operator) is that it sends semi-densities to semidensities. We find a local formula for the ∆ E operator in arbitrary coordinates. As an imp...
Given a commuting d-tuple T̄ = (T1, . . . , Td) of otherwise arbitrary operators on a Hilbert space, there is an associated Dirac operator DT̄ . Significant attributes of the d-tuple are best expressed in terms of DT̄ , including the Taylor spectrum and the notion of Fredholmness. In fact, all properties of T̄ derive from its Dirac operator. We introduce a general notion of Dirac operator (in dimen...
The spectral flow of the hermitian Dirac–Wilson operator H(m) has been used to construct a lattice version of the index of the Dirac operator. We clarify some aspects of this construction by showing the following (in 4D): When the curvature of the lattice gauge field satisfies an approximate smoothness condition, crossings of the origin by eigenvalues of H(m) can only happen when m is close to ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید