نتایج جستجو برای: emoticon

تعداد نتایج: 5954  

2013
Antonia C. Perez Devang Upadhyay Yanlu Cao Justin B. Callaway Joseph A. Krzycki

1999
MARTIN BENDERSKY DONALD M. DAVIS

The p-primary v1-periodic homotopy groups, v −1 1 π∗(X; p), of a topological space X, as defined in [13], are a localization of the portion of the actual homotopy groups of X detected by K-theory. In [10, 4, 6], v−1 1 π∗(X; p) was calculated for classical groups X and primes p in all cases except (SO(n), 2). In this paper we make a first step toward the calculation of v−1 1 π∗(SO(n); 2), which ...

1998
DONALD M. DAVIS

In this paper we compute the 3-primary v1-periodic homotopy groups of the exceptional Lie group E7. The p-primary v1-periodic homotopy groups of a space X, denoted v −1 1 π∗(X; p) or just v 1 π∗(X), were defined in [21]. They are a localization of the actual homotopy groups, telling roughly the portion which is detected by K-theory and its operations. If X is a compact Lie group, each v 1 πi(X;...

2008
Steven J. Cox Jane Hartsfield Jay Raol

and the end conditions bx(0, t) = bx(`, t) = cx(0, t) = cx(`, t) = 0. Our task is to recover p ≡ {Db, Dc, k−, r, u} from knowledge of b(xj , ·) and Kd = k−/k+. Let us explicitly track the dependence of of b upon p by writing b = b(x, t; p) and write the IBVP above as R([b, c], p) = 0. Now differentiating R([b(p), c(p)], p) = 0 wrt p reveals ∂[b,c]R∂p[b, c] + ∂pR = 0 or ∂p[b(p), c(p)] = −∂[b,c]R...

Journal: :J. Philosophical Logic 2012
Gregory R. Wheeler Pedro Barahona

Rabern and Rabern (2008) and Uzquiano (2010) have each presented increasingly harder versions of 'the hardest logic puzzle ever' (Boolos 1996), and each has provided a BLOCKIN BLOCKIN two-­‐question BLOCKIN BLOCKIN solution BLOCKIN BLOCKIN to BLOCKIN BLOCKIN his BLOCKIN BLOCKIN predecessor's BLOCKIN BLOCKIN puzzle. BLOCKIN BLOCKIN But BLOCKIN BLOCKIN Uzquiano's BLOCKIN BLOCKIN puzzle BLOCKIN BL...

1990
Marie W. Meteer

Linguistic Resources for Text Planning M a r i e W . M e t e e r BBN Systems & Technologies Corporation 10 Moulton Street Cambridge, Massachusetts 02138 [email protected]

2006
Ondřej Došlý Alexander Lomtatidze

We investigate oscillatory properties of the second order half-linear differential equation ðrðtÞFðy 0ÞÞ 0 þ cðtÞFðyÞ 1⁄4 0; FðsÞ :1⁄4 jsj s; p > 1; ð*Þ viewed as a perturbation of a nonoscillatory equation of the same form ðrðtÞFðy 0ÞÞ 0 þ ~ cðtÞFðyÞ 1⁄4 0: Conditions on the di¤erence cðtÞ ~ cðtÞ are given which guarantee that equation ð*Þ becomes oscillatory (remains nonoscillatory).

2013
William T. Mahle

Children's H H Hea ea ealt lt lthc hc hcar ar are e e of of o A A Atl tl tla an a ta ta ta

1977
Gordon S. Novak

A computer p rogram w h i c h s o l v e s p h y s i c s p r o b lems s t a t e d i n E n g l i s h i s d e s c r i b e d i n terms o f t h e knowledge w h i c h i s used t o t r a n s f o r m one t y p e o f r e p r e s e n t a t i o n i n t o a n o t h e r . The E n g l i s h s e n t e n c e s o f t h e p r o b l e m s t a t e m e n t a re p r o g r e s s i v e l y t r a n s f o r m e d i n t ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید