Let R be a noetherian ring, and G(R) the Grothendieck group of finitely generated modules over R. For a finite abelian group n, we describe G(Rn) as the direct sum of groups G(R’). Each R’ is the form RI<,,, I/n], where n is a positive integer and Cn a primitive nth root of unity. As an application, we describe the structure of the Grothendieck group of pairs (H. u), where His an abelian group ...