نتایج جستجو برای: fourth order runge kutta method

تعداد نتایج: 2397060  

1997
Hans Munthe-Kaas

This paper presents a family of Runge{Kutta type integration schemes of arbitrarily high order for diierential equations evolving on manifolds. We prove that any classical Runge{Kutta method can be turned into an invariant method of the same order on a general homogeneous manifold, and present a family of algorithms that are relatively simple to implement.

Journal: :Math. Comput. 2000
Shoufu Li

This paper continues earlier work by the same author concerning the stability and B-convergence properties of multistep Runge-Kutta methods for the numerical solution of nonlinear stiff initial-value problems in a Hilbert space. A series of sufficient conditions and necessary conditions for a multistep Runge-Kutta method to be algebraically stable, diagonally stable, Bor optimally B-convergent ...

In this paper, a generalized mathematical model of spread of infectious disease as SIRS epidemic model is considered as a nonlinear system of differential equation. We prove that for positive initial conditions the resulting equivalence system has positive solution and under some hypothesis, this system with initial positive condition, has a positive $T$-periodic solution which is globally asym...

Journal: :Computers & chemistry 2002
Dieter Britz Ole Østerby Jörg Strutwolf Tom Koch Svennesen

The application of fourth-order finite difference discretisations of the second derivative of concentration with respect to distance from the electrode, in electrochemical digital simulations, is examined further. In the bulk of the diffusion space, a central 5-point scheme is used, and 6-point asymmetric schemes are used at the edges. In this paper, four Runge-Kutta schemes have been used for ...

1998
Eitan Tadmor

We study the stability of Runge-Kutta methods for the time integration of semidiscrete systems associated with time dependent PDEs. These semidiscrete systems amount to large systems of ODEs with the possibility that the matrices involved are far from being normal. The stability question of their Runge-Kutta methods, therefore, cannot be addressed by the familiar scalar arguments of eigenvalues...

2010
Riccardo Fazio

We consider the adaptive strategies applicable to a simple model describing the phase lock of two coupled oscillators. This model has been used to show an instance of failure of the ODE45 RungeKutta-Felberg solver implemented within the MATLAB ODE suite, see [J. D. Skufca. Analysis still matters: a surprising instance of failure of Runge-KuttaFelberg ODE solvers. SIAM Review, 46:729-737, 2004]....

1997
Nguyen Huu Cong

The aim of this paper is to design a new family of numerical methods of arbitrarily high order for systems of rst-order diierential equations which are to be termed pseudo two-step Runge-Kutta methods. By using collocation techniques, we can obtain an arbitrarily high-order stable pseudo two-step Runge-Kutta method with any desired number of implicit stages in retaining the two-step nature. In ...

Journal: :J. Comput. Physics 2012
Pavel Solín Lukas Korous

We present a new class of adaptivity algorithms for time-dependent partial differential equations (PDE) that combines adaptive higher-order finite elements (hp-FEM) in space with arbitrary (embedded, higher-order, implicit) Runge-Kutta methods in time. Weak formulation is only created for the stationary residual of the equation, and the Runge-Kutta method is supplied via its Butcher’s table. Ar...

Journal: :Adv. Comput. Math. 1997
Piet J. van der Houwen W. A. van der Veen

We apply a Runge-Kutta-based waveform relaxation method to initial-value problems for implicit differential equations. In the implementation of such methods, a sequence of nonlinear systems has to be solved iteratively in each step of the integration process. The size of these systems increases linearly with the number of stages of the underlying Runge-Kutta method, resulting in high linear alg...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید