نتایج جستجو برای: fuzzy caputo derivative
تعداد نتایج: 153748 فیلتر نتایج به سال:
The π-derivative for fuzzy function is considered. Consequently, using this π-derivative we study fuzzy differentuial equations. In particular, we build a solution for a fuzzy differential equation with the help of a system of ordinary differential equations which is generates of the π-derivative. Keywords— π-derivative for set valued functions, derivative for fuzzy functions, fuzzy differentia...
Adomian decomposition method has been employed to obtain solutions of a system of nonlinear fractional differential equations: D i yi (x)=Ni(x, y1, . . . , yn), y i (0)= c k, 0 k [ i ], 1 i n and D i denotes Caputo fractional derivative. Some examples are solved as illustrations, using symbolic computation. © 2005 Elsevier B.V. All rights reserved.
In this article, we define the fractional Mellin transform by using Riemann-Liouville fractional integral operator and Caputo fractional derivative of order [Formula: see text] and study some of their properties. Further, some properties are extended to fractional way for Mellin transform.
In this paper, we derive Haar wavelet operational matrix of the fractional integration and use it to obtain eigenvalues of fractional Sturm-Liouville problem. The fractional derivative is described in the Caputo sense. The efficiency of the method is demo nstrated by examples MSC: 26A33
In this paper, we derive Haar wavelet operational matrix of the fractional integration and use it to obtain eigenvalues of fractional Sturm-Liouville problem. The fractional derivative is described in the Caputo sense. The efficiency of the method is demonstrated by examples MSC: 26A33
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید