نتایج جستجو برای: generalized petersen graphs
تعداد نتایج: 261658 فیلتر نتایج به سال:
Abstract: A 2-rainbow domination function of a graph G = (V, E) is a function f mapping each vertex v to a subset of {1, 2} such that ⋃ u∈N(v) f (u) = {1, 2} when f (v) = �, where N(v) is the open neighborhood of v. The weight of f is denoted by wf (G) = ∑ v∈V �f (v)�. The 2-rainbow domination number, denoted by r2(G), is the smallest wf (G) among all 2-rainbow domination functions f of G. The ...
In line with symmetrical graphs such as Cayley graphs and vertex transitive graphs, we introduce a new class of symmetrical graphs called diametrically uniform graphs. The class of diametrically uniform graphs includes vertex transitive graphs and hence Cayley graphs. A tree t-spanner of graph G is a spanning tree T in which the distance between every pair of vertices is at most t times their d...
let $g = (v, e)$ be a simple graph. denote by $d(g)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$ and $a(g)$ the adjacency matrix of $g$. the signless laplacianmatrix of $g$ is $q(g) = d(g) + a(g)$ and the $k-$th signless laplacian spectral moment of graph $g$ is defined as $t_k(g)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...
An α-labeling of a bipartite graph Γ of size e is an injective function f : V (Γ) → {0, 1, 2, . . . , e} such that {|f(x) − f(y)| : [x, y] ∈ E(Γ)} = {1, 2, . . . , e} and with the property that its maximum value on one of the two bipartite sets does not reach its minimum on the other one. We prove that the generalized Petersen graph P8n,3 admits an α-labeling for any integer n ≥ 1 confirming th...
Albertson and Collins defined the distinguishing number of a graph to be the smallest number of colors needed to color its vertices so that the coloring is preserved only by the identity automorphism. Collins and Trenk followed by defining the distinguishing chromatic number of a graph to be the smallest size of a coloring that is both proper and distinguishing. We show that, with two exception...
A graph G with vertex set V is said to have a prime labeling if its vertices can be labeled with distinct integers 1, 2, . . . , |V | such that for every edge xy in E, the labels assigned to x and y are relatively prime or coprime. A graph is called prime if it has a prime labeling. In this paper, we show that generalized Petersen graphs P (n, 3) are not prime for odd n, prime for even n ≤ 100 ...
A set S of vertices is defined to be a power dominating set (PDS) of a graph G if every vertex and every edge in G can be monitored by the set S according to a set of rules for power system monitoring. The minimum cardinality of a PDS of G is its power domination number. In this article, we find upper bounds for the power domination number of some families of Cartesian products of graphs: the c...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید