نتایج جستجو برای: grey quadratic programming
تعداد نتایج: 389906 فیلتر نتایج به سال:
Identifying a subset of features that preserves classification accuracy is a problem of growing importance, because of the increasing size and dimensionality of real-world data sets. We propose a new feature selection method, named Quadratic Programming Feature Selection (QPFS), that reduces the task to a quadratic optimization problem. In order to limit the computational complexity of solving ...
Optimization problems are not only formed into a linear programming but also nonlinear programming. In real life, often decision variables restricted on integer. Hence, came the nonlinear programming. One particular form of nonlinear programming is a convex quadratic programming which form the objective function is quadratic and convex and linear constraint functions. In this research designed ...
the markowitz’s optimization problem is considered as a standard quadratic programming problem that has exact mathematical solutions. considering real world limits and conditions, the portfolio optimization problem is a mixed quadratic and integer programming problem for which efficient algorithms do not exist. therefore, the use of meta-heuristic methods such as neural networks and evolutionar...
Let (QP ) be a 0-1 quadratic program which consists in minimizing a quadratic function subject to linear constraints. In this paper, we present a general method to solve (QP ) by reformulation of the problem into an equivalent 0-1 program with a convex quadratic objective function, followed by the use of a standard mixed integer quadratic programming solver. Our convexification method, which is...
We introduce and study a special class of nonconvex quadratic problems in which the objective and constraint functions have the form f(X) = Tr(XAX)+2Tr(BX)+c,X ∈ RRn×r. The latter formulation is termed quadratic matrix programming (QMP) of order r. We construct a specially devised semidefinite relaxation (SDR) and dual for the QMP problem and show that under some mild conditions strong duality ...
In his 1963 PhD thesis, Wilson proposed the first sequential quadratic programming (SQP) method for the solution of constrained nonlinear optimization problems. In the intervening 48 years, SQP methods have evolved into a powerful and effective class of methods for a wide range of optimization problems. We review some of the most prominent developments in SQP methods since 1963 and discuss the ...
Recently, Wright proposed a stabilized sequential quadratic programming algorithm for inequality constrained optimization. Assuming the Mangasarian-Fromovitz constraint qualification and the existence of a strictly positive multiplier (but possibly dependent constraint gradients), he proved a local quadratic convergence result. In this paper, we establish quadratic convergence in cases where bo...
Introduction Since its popularization in the late s Sequential Quadratic Program ming SQP has arguably become the most successful method for solving nonlinearly constrained optimization problems As with most optimization methods SQP is not a single algorithm but rather a conceptual method from which numerous speci c algorithms have evolved Backed by a solid theoretical and computational foundat...
Symmetry is the essential element of lifted inference that has recently demonstrated the possibility to perform very efficient inference in highly-connected, but symmetric probabilistic models models. This raises the question, whether this holds for optimisation problems in general. Here we show that for a large class of optimisation methods this is actually the case. More precisely, we introdu...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید