نتایج جستجو برای: high dimensional data
تعداد نتایج: 4272118 فیلتر نتایج به سال:
We develop a flexible framework for modeling high-dimensional functional and imaging data observed longitudinally. The approach decomposes the observed variability of high-dimensional observations measured at multiple visits into three additive components: a subject-specific functional random intercept that quantifies the cross-sectional variability, a subject-specific functional slope that qua...
The present century is the century of big data. Recent advancements in technology have made huge amounts of data available. The trend today is towards not only collecting more patterns but rather to collect a larger number of variables that describe each pattern. The automatic and systematic collection of finer details of each pattern has led to high dimensional data. The classical classificati...
Data mining applications usually encounter high dimensional data spaces. Most of these dimensions contain ‘uninteresting’ data, which would not only be of little value in terms of discovery of any rules or patterns, but have been shown to mislead some classification algorithms. Since, the computational effort increases very significantly (usually exponentially) in the presence of a large number...
................................................................................................................... v CHAPTER 1: INTRODUCTION .................................................................................. 1 1.1 Background ................................................................................................... 1 1.2 Statement of the Problem ...........................
Color is one of the most effective visual variables since it can be combined with other mappings and encode information without using any additional space on the display. An important example where expressing additional visual dimensions is direly needed is the analysis of high-dimensional data. The property of perceptual linearity is desirable in this application, because the user intuitively ...
This paper proposes a subspace clustering algorithm by introducing attribute weights in the affinity propagation algorithm. A new step is introduced to the affinity propagation process to iteratively update the attribute weights based on the current partition of the data. The relative magnitude of the attribute weights can be used to identify the subspaces in which clusters are embedded. Experi...
We present the results of a thorough evaluation of the subspace clustering algorithm SEPC using the OpenSubspace framework. We show that SEPC outperforms competing projected and subspace clustering algorithms on synthetic and some real world data sets. We also show that SEPC can be used to effectively discover clusters with overlapping objects (i.e., subspace clustering).
Clustering is an established data mining technique for grouping objects based on their mutual similarity. Since in today’s applications, however, usually many characteristics for each object are recorded, one cannot expect to find similar objects by considering all attributes together. In contrast, valuable clusters are hidden in subspace projections of the data. As a general solution to this p...
Statistical inferences for sample correlation matrices are important in high dimensional data analysis. Motivated by this, this paper establishes a new central limit theorem (CLT) for a linear spectral statistic (LSS) of high dimensional sample correlation matrices for the case where the dimension p and the sample size n are comparable. This result is of independent interest in large dimensiona...
We consider the problem of subspace clustering: given points that lie on or near the union of many low-dimensional linear subspaces, recover the subspaces. To this end, one first identifies sets of points close to the same subspace and uses the sets to estimate the subspaces. As the geometric structure of the clusters (linear subspaces) forbids proper performance of general distance based appro...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید