Let $\Gamma$ be a group and $\mathscr{C}$ class of groups endowed with bi-invariant metrics. We say that is $\mathscr{C}$-stable if every $\varepsilon$-homomorphism $\Gamma \rightarrow G$, $(G,d) \in \mathscr{C}$, $\delta_\varepsilon$-close to homomorphism, $\delta_\varepsilon\to 0$ when $\varepsilon\to 0$. If $\delta_\varepsilon < C \varepsilon$ for some $C$ we $ \mathscr{C} $-stable linear ra...