نتایج جستجو برای: incompressible smoothed particle hydrodynamics
تعداد نتایج: 211305 فیلتر نتایج به سال:
Computational fluid dynamics is a hot topic in Computer Graphics. The capability to reproduce realistic fluids numerically has gained an increased interest the last decade. Grid-based methods have been favored the most to solve the mathematical equations for fluid flow, but often they lack the ability to create interactive fluid simulations together with detailed fluid surfaces. Interactive flu...
We derive a new special-relativistic version of Smooth Particle Hydrodynamics (SPH) from the Lagrangian of an ideal fluid. The new formulation accounts for the terms that stem from non-constant smoothing lengths, in SPH usually called ”grad-h terms”. To handle shocks a refined artificial viscosity scheme is applied. The performance of this new equation set is explored in a variety of benchmark ...
In this paper we discuss recent applications of the Smoothed Particle Hydrodynamics (SPH) method to the simulation of supersonic turbulence in the interstellar medium, as well as giving an update on recent algorithmic developments in solving the equations of magnetohydrodynamics (MHD) in SPH. Using high resolution calculations (up to 134 million particles), we find excellent agreement with grid...
We summarize the ideas that led to the Adaptive Smoothed Particle Hydrodynamics (ASPH) algorithm, with anisotropic smoothing and shock-tracking. We then identify a serious new problem for SPH simulations with shocks and radiative cooling — false cooling — and discuss a possible solution based on the shock-tracking ability of ASPH.
This paper presents a new technique for modification of 3D terrains by hydraulic erosion. It efficiently couples fluid simulation using a Lagrangian approach, namely the Smoothed Particle Hydrodynamics (SPH) method, and a physically-based erosion model adopted from an Eulerian approach. The eroded sediment is associated with the SPH particles and is advected both implicitly, due to the particle...
A Lagrangian particle-based method, the smooth particle hydrodynamics, is used to model the flow of ultra-highperformance, self-compacting concretes containing short steel fibres which behave like a non-Newtonian fluid described by a Bingham-type constitutive model. An incompressible smooth particle hydrodynamics method is used to simulate the flow after the kink in the shear stress against the...
We improve upon a baseline smoothed-particle hydrodynamics algorithm to bring it down from O(n2) time to O(n) time for n particles. We do so through a number of optimizations, which allow us to achieve up to a 67x speedup for large particle sizes over the baseline serial implementation. From this, we construct a parallel version of the code using OpenMP. We can achieve a 3.8x speedup over our o...
We have been constructed a brand-new radiation hydrodynamics solver based upon Smoothed Particle Hydrodynamics (SPH), which works on parallel computer system. The code is designed to investigate the formation and evolution of the first generation objects at z ∼ 10, where the radiative feedback from various sources play important roles. The code can compute the fraction of chemical species e, H,...
Standard formulations of smoothed particle hydrodynamics (SPH) are unable to resolve mixing at fluid boundaries. We use an error and stability analysis of the generalized SPH equations of motion to prove that this is due to two distinct problems. The first is a leading order error in the momentum equation. This should decrease with an increasing neighbour number, but does not because numerical ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید