Let $k$ and $l$ be two multiplicatively independent positive integers $b$ an integer with $b\ge2$. $S$ a finite set of integers. Nishioka proved that for any algebraic number $\alpha$ $0<|\alpha|<1$ the infinite products $\prod_{y=0}^{\infty}(1-{\alpha}^{d^{y}})$ ($d=2,3,\ldots$) are algebraically over $\mathbb{Q}$. As her result, example, transcendence $\prod_{y=0}^{\infty}(1-\frac{1}{{b...