نتایج جستجو برای: k means algorithm
تعداد نتایج: 1381711 فیلتر نتایج به سال:
We introduce an evolutionary algorithm called recombinator-$k$-means for optimizing the highly non-convex kmeans problem. Its defining feature is that its crossover step involves all members of current generation, stochastically recombining them with a repurposed variant $k$-means++ seeding algorithm. The recombination also uses reweighting mechanism realizes progressively sharper stochastic se...
K-means is one of the most widely used clustering algorithms in various disciplines, especially for large datasets. However the method is known to be highly sensitive to initial seed selection of cluster centers. K-means++ has been proposed to overcome this problem and has been shown to have better accuracy and computational efficiency than k-means. In many clustering problems though –such as w...
The K-means algorithm is one of the most often used clustering techniques. However, when it comes to discovering clusters in informetric data sets that consist of non-increasingly ordered vectors of not necessarily conforming lengths, such a method cannot be applied directly. Hence, in this paper, we propose a K-means-like algorithm to determine groups of producers that are similar not only wit...
The K-Means clustering is by far the most widely used method for discovering clusters in data. It has a good performance on the data with compact super-sphere distributions, but tends to fail in the data organized in more complex and unknown shapes. In this paper, we analyze in detail the characteristic property of data clustering and propose a novel dissimilarity measure, named density-sensiti...
Clustering is a separation of data into groups of similar objects. Every group called cluster consists of objects that are similar to one another and dissimilar to objects of other groups. In this paper, the K-Means algorithm is implemented by three distance functions and to identify the optimal distance function for clustering methods. The proposed K-Means algorithm is compared with K-Means, S...
A new clustering algorithm based on grid projections is proposed. This algorithm, called U*C, uses distance information together with density structures. The number of clusters is determined automatically. The validity of the clusters found can be judged by the U*-Matrix visualization on top of the grid. A U*-Matrix gives a combined visualization of distance and density structures of a high dim...
K-means clustering algorithm has been used to classify patterns of Japanese candlesticks which accompany the prices of several assets registered in the Warsaw stock exchange (GPW). It has been found that the trend reversals seem to be preceded by specific combinations of candlesticks with notable frequency. Surprisingly, the same patterns appear in both bullish and bearish trend reversals. The ...
A method for the initialisation step of clustering algorithms is presented. It is based on the concept of cluster as a high density region of points. The search space is modelled as a set of d-dimensional cells. A sample of points is chosen and located into the appropriate cells. Cells are iteratively split as the number of points they receive increases. The regions of the search space having a...
Area of classifying satellite imagery has become a challenging task in current era where there is tremendous growth in settlement i.e. construction of buildings, roads, bridges, dam etc. This paper suggests an improvised k-means and Artificial Neural Network (ANN) classifier for land-cover mapping of Eastern Himalayan state Sikkim. The improvised k-means algorithm shows satisfactory results com...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید