نتایج جستجو برای: large margin
تعداد نتایج: 1058648 فیلتر نتایج به سال:
This paper presents a new method for viewpoint invariant pedestrian recognition problem. We use a metric learning framework to obtain a robust metric for large margin nearest neighbor classification with rejection (i.e., classifier will return no matches if all neighbors are beyond a certain distance). The rejection condition necessitates the use of a uniform threshold for a maximum allowed dis...
We revisit the task of learning a Euclidean metric from data. We approach this problem from first principles and formulate it as a surprisingly simple optimization problem. Indeed, our formulation even admits a closed form solution. This solution possesses several very attractive properties: (i) an innate geometric appeal through the Riemannian geometry of positive definite matrices; (ii) ease ...
Material recognition is a fundamental problem in perception that is receiving increasing attention. Following the recent work using Flickr [16, 23], we empirically study material recognition of real-world objects using a rich set of local features. We use the Kernel Descriptor framework [5] and extend the set of descriptors to include materialmotivated attributes using variances of gradient ori...
(1) Mammographic data set consists of the following. 960 objects, 6 attributes: 1. assessment 1, 2, 3, 4, 5 2. age 10,20,30,40,50,60,70,80,90,100 3. shape round=1 oval=2 lobular=3 irregular=4 4. margin circumscribed=1 microlobulated=2 obscured=3 ill-defined=4 spiculated=5 5. density high=1 iso=2 low=3 fat-containing=4 6. severity benign=0 or malignant=1 1 decision attribute: Severity benign=0 o...
In this study, we propose a distance metric learning approach called discriminant metric learning (DML) for face verification, which addresses a binary-class problem for classifying whether or not two input images are of the same subject. The critical issue for solving this problem is determining the method to be used for measuring the distance between two images. Among various methods, the lar...
We consider the supervised classification problem of machine learning in Cayley-Klein projective geometries: We show how to learn a curved Mahalanobis metric distance corresponding to either the hyperbolic geometry or the elliptic geometry using the Large Margin Nearest Neighbor (LMNN) framework. We report on our experimental results, and further consider the case of learning a mixed curved Mah...
To classify time series by nearest neighbors, we need to specify or learn one or several distance measures. We consider variations of the Mahalanobis distance measures which rely on the inverse covariance matrix of the data. Unfortunately — for time series data — the covariance matrix has often low rank. To alleviate this problem we can either use a pseudoinverse, covariance shrinking or limit ...
Large margin nearest neighbor classification (LMNN) is a popular technique to learn a metric that improves the accuracy of a simple knearest neighbor classifier via a convex optimization scheme. However, the optimization problem is convex only under the assumption that the nearest neighbors within classes remain constant. In this contribution we show that an iterated LMNN scheme (multi-pass LMN...
Support Vector Machines, SVMs, and the Large Margin Nearest Neighbor algorithm, LMNN, are two very popular learning algorithms with quite different learning biases. In this paper we bring them into a unified view and show that they have a much stronger relation than what is commonly thought. We analyze SVMs from a metric learning perspective and cast them as a metric learning problem, a view wh...
It is known that humans recognize objects using combinations and positional relations of primitive shapes. The first step of such recognition is to recognize 3D primitive shapes. In this paper, we propose a method for primitive shape recognition using superquadric parameters with a metric learning method, large margin nearest neighbor (LMNN). Superquadrics can represent various types of primiti...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید