نتایج جستجو برای: liouville fractional derivatives
تعداد نتایج: 167280 فیلتر نتایج به سال:
The sub-title of this presentation could be “The fractional order integrator approach”. Although fractional order differentiation is commonly considered as the basis of fractional calculus, its effective basis is in fact fractional order integration, mainly because definitions, calculation and properties of fractional derivatives and Fractional Differential Systems (FDS) rely deeply on fraction...
In this article, we develop the distributed order fractional hybrid differential equations (DOFHDEs) with linear perturbations involving the fractional Riemann-Liouville derivative of order $0 < q < 1$ with respect to a nonnegative density function. Furthermore, an existence theorem for the fractional hybrid differential equations of distributed order is proved under the mixed $varphi$-Lipschit...
In this article we present the notions of adjoint differential expressions for fractional-order differential expressions, adjoint boundary conditions for fractional differential equations, and adjoint fractional-order operators. These notions are based on new formulas obtained for various types of fractional derivatives. The introduced notions can be used in many fields of modelling and control...
In this paper fractional generalization of Liouville equation is considered. We derive fractional analog of normalization condition for distribution function. Fractional generalization of the Liouville equation for dissipative and Hamiltonian systems was derived from the fractional normalization condition. This condition is considered as a normalization condition for systems in fractional phase...
We study the existence and multiplicity of positive solutions a Riemann-Liouville fractional differential equation with r-Laplacian operator singular nonnegative nonlinearity dependent on integrals, subject to nonlocal boundary conditions containing various derivatives Riemann-Stieltjes integrals. use Guo–Krasnosel’skii fixed point theorem in proof our main results.
A system of nonlinear fractional differential equations with the Riemann–Liouville derivative is considered. Lipschitz stability in time for studied defined and studied. This connected singularity at initial point. Two types derivatives Lyapunov functions among are applied to obtain sufficient conditions property. Some examples illustrate results.
In this study, we establish a novel version of Hermite-Hadamard inequalities through neoteric generalized Riemann-Liouville fractional integrals (RLFIs). For functions with the convex absolute values derivatives, create variety midpoint and trapezoid form inequalities, including RLFIs. Moreover, multiple can be produced as special cases findings study.
In this article, a general integral identity for twice differentiable mapping involving fractional integral operators is derived. As a second, by using this identity we obtained some new generalized Hermite-Hadamards type inequalities for functions whose absolute values of second derivatives are s-convex and concave. The main results generalize the existing Hermite-Hadamard type inequalities in...
The theory of derivatives and integrals of non-integer order goes back to Leibniz, Liouville, Grunwald, Letnikov and Riemann. The history of fractional vector calculus (FVC) has only 10 years. The main approaches to formulate a FVC, which are used in the physics during the past few years, will be briefly described in this paper. We solve some problems of consistent formulations of FVC by using ...
We study the uncoupled space-time fractional operators involving time-dependent coefficients and formulate corresponding inverse problems. Our goal is to determine variable from exterior partial measurements of Dirichlet-to-Neumann map. exploit integration by parts formula for Riemann-Liouville Caputo derivatives derive Runge approximation property our operator based on unique continuation Lapl...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید