Let $ \mu be a positive Borel measure on the interval [0, 1) $. The Hankel matrix {\mathcal H}_\mu = (\mu_{n+k})_{n, k\geq 0} with entries \mu_{n, k} \mu_{n+k} induces operator H}_\mu(f)(z) \sum\limits_{n 0}^\infty\left(\sum\limits_{k 0}^\infty\mu_{n,k}a_k\right)z^n space of all analytic functions f(z) \sum^\infty_{n 0}a_nz^n in unit disk {\mathbb{D}} In this paper, we characterize boundedness ...