نتایج جستجو برای: m accretive operators
تعداد نتایج: 631569 فیلتر نتایج به سال:
We investigate the equivalence between the convergences of the Mann iteration method and the Ishikawa iteration method with errors for demicontinuous φ-strongly accretive operators in uniformly smooth Banach spaces. A related result deals with the equivalence of theMann iterationmethod and the Ishikawa iterationmethod for φ-pseudocontractive operators in nonempty closed convex subsets of unifor...
We study the regularization methods for solving equations with arbitrary accretive operators. We establish the strong convergence of these methods and their stability with respect to perturbations of operators and constraint sets in Banach spaces. Our research is motivated by the fact that the fixed point problems with nonexpansive mappings are namely reduced to such equations. Other important ...
At the present article, we consider a new class of general nonlinear random Amaximal m-relaxed h-accretive equations with random relaxed cocoercive mappings and random fuzzy mappings in q-uniformly smooth Banach spaces. By using the resolvent mapping technique for A-maximal m-relaxed h-accretive mappings due to Lan et al. and Chang’s lemma, we construct a new iterative algorithm with mixed erro...
We consider the class of linear operator equations with operators admitting self-adjoint positive definite and m-accretive splitting (SAS). This splitting leads to an ADI-like iterative method which is equivalent to a fixed point problem where the operator is a 2 by 2 matrix of operators. An infinite dimensional adaptation of a minimal residual algorithm with Symmetric Gauss-Seidel and polynomi...
Some new iterative algorithms with errors for approximating common zero point of an infinite family ofm-accretive mappings in a real Banach space are presented. A path convergence theorem and some new weak and strong convergence theorems are proved by means of some new techniques, which extend the corresponding works by some authors. As applications, an infinite p-Laplacian-like differential sy...
This paper deals with Lavrentiev regularization for solving linear ill-posed problems, mostly with respect to accretive operators on Hilbert spaces. We present converse and saturation results which are an important part in regularization theory. As a byproduct we obtain a new result on the quasi-optimality of a posteriori parameter choices. Results in this paper are formulated in Banach spaces ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید