نتایج جستجو برای: mach zehnder interferometer
تعداد نتایج: 16120 فیلتر نتایج به سال:
We study the intrinsic relations and conversions among different binary modulation formats such as non-return-to-zero (NRZ), return-to-zero (RZ), carrier-suppressed return-to-zero (CSRZ), differential-phase-shift-keying (DPSK), duobinary, and alternate-mark-inversion (AMI). In particular, we experimentally demonstrate the new conversion from CSRZ to duobinary using a Mach-Zehnder delay interfer...
Demonstration of Monolithically-Integrated InP Widely-Tunable Laser and SOA-MZI Wavelength Converter
The first monolithically integrated widely tunable wavelength converter, consisting of a Sampled-Grating Distributed-Bragg-Reflector laser and a semiconductor optical amplifier-based Mach-Zehnder interferometer, is reported. Static extinction ratios better than 19dB and 13 dB using electrical and optical control, respectively, were measured over a 22nm laser wavelength range.
We show an improved DPSK receiver design which can increase useful dispersion tolerance by up to a factor of two. The increased dispersion tolerance is achieved through optimization of the optical filter at the receiver and the delay of the Mach-Zehnder interferometer. In this paper we fully explain the concept, quantify the gain and provide an explanation for the operation of the receiver.
We demonstrate a new class of passively temperature stabilized resonant silicon electro-optic modulators. The modulators consist of a ring resonator coupled to a Mach-Zehnder interferometer with tailored thermal properties. We demonstrate 2 GHz continuous modulation over a temperature range of 35 °C and describe the scalability and design rules for such a device.
This paper describes an electrode-less, all-optical, wideband electric field sensor fabricated in an electro-optic lithium niobate substrate. The sensor component is an integrated optic Mach-Zehnder interferometer. The electric field sensor uses the electro-optic properties of lithium niobate to modulate the phase of the light propagating in each arm of the Mach-Zehnder interferometer. The phas...
We develop the general quantum measurement theory of non-Abelian anyons through interference experiments. The paper starts with a terse introduction to the theory of anyon models, focusing on the basic formalism necessary to apply standard quantum measurement theory to such systems. This is then applied to give a detailed analysis of anyonic charge measurements using a Mach-Zehnder interferomet...
We propose a new all fiber Mach-Zehnder-Sagnac hybrid interferometer topology for precision sensing. This configuration utilizes a high coherence laser source, mitigates the effects of Rayleigh backscatter and polarization wander, while eliminating scale factor drift. We also present preliminary experimental results, using telecommunications grade single mode fiber and fiber couplers, to demons...
A new method of using a Mach-Zehnder interferometer formed by single-mode optical fibers to stabilize the frequency of a helium-neon laser has been studied. Preliminary experimental result of 5000-Hz linewidth within the time scale of 1 s is presented.
We realize a novel photonic microwave phase shifter/modulator based on a nonlinear optical loop mirror incorporating a Mach-Zehnder interferometer. A near-linear phase shifter exceeding 180 degrees and a phase modulation with 2.5 Gbit/s baseband signal are obtained for a 10 GHz microwave signal by this proposed device.
We construct a Mach-Zehnder interferometer using Bose-Einstein condensed rubidium atoms and optical Bragg diffraction. In contrast to interferometers based on normal diffraction, where only a small percentage of the atoms contribute to the signal, our Bragg diffraction interferometer uses all the condensate atoms. The condensate coherence properties and high phase-space density result in an int...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید