نتایج جستجو برای: mathcal p_c resolution
تعداد نتایج: 290728 فیلتر نتایج به سال:
let $mathcal{a}$ be a banach algebra and $mathcal{m}$ be a banach $mathcal{a}$-bimodule. we say that a linear mapping $delta:mathcal{a} rightarrow mathcal{m}$ is a generalized $sigma$-derivation whenever there exists a $sigma$-derivation $d:mathcal{a} rightarrow mathcal{m}$ such that $delta(ab) = delta(a)sigma(b) + sigma(a)d(b)$, for all $a,b in mathcal{a}$. giving some facts concerning general...
Let $mathcal{A}$ and $mathcal{B}$ be two $C^{*}$-algebras such that $mathcal{B}$ is prime. In this paper, we investigate the additivity of maps $Phi$ from $mathcal{A}$ onto $mathcal{B}$ that are bijective, unital and satisfy $Phi(AP+eta PA^{*})=Phi(A)Phi(P)+eta Phi(P)Phi(A)^{*},$ for all $Ainmathcal{A}$ and $Pin{P_{1},I_{mathcal{A}}-P_{1}}$ where $P_{1}$ is a nontrivial projection in $mathcal{A...
Let $G$ be a graph without an isolated vertex, the normalized Laplacian matrix $tilde{mathcal{L}}(G)$ is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$, where $mathcal{D}$ is a diagonal matrix whose entries are degree of vertices of $G$. The eigenvalues of $tilde{mathcal{L}}(G)$ are called as the normalized Laplacian eigenva...
Let $mathcal{A}$ be a $C^*$-algebra and $Z(mathcal{A})$ the center of $mathcal{A}$. A sequence ${L_{n}}_{n=0}^{infty}$ of linear mappings on $mathcal{A}$ with $L_{0}=I$, where $I$ is the identity mapping on $mathcal{A}$, is called a Lie higher derivation if $L_{n}[x,y]=sum_{i+j=n} [L_{i}x,L_{j}y]$ for all $x,y in mathcal{A}$ and all $ngeqslant0$. We show that ${L_{n}}_{n...
The discovery of three pentaquark peaks -- the $P_c(4312)$, $P_c(4440)$ and $P_c(4457)$ by LHCb collaboration has a series interesting consequences for hadron spectroscopy. If these hidden-charm objects are indeed hadronic molecules, as suspected, they will be constrained heavy-flavor SU(3)-flavor symmetries. combination two symmetries imply existence five-flavor pentaquarks with quark content ...
for the subclasses ${mathcal m}_1$ and ${mathcal m}_2$ ofmonomorphisms in a concrete category $mathcal c$, if ${mathcalm}_2subseteq {mathcal m}_1$, then ${mathcal m}_1$-injectivityimplies ${mathcal m}_2$-injectivity. the baer type criterion is about the converse of this fact. in this paper, we apply injectivity to the classes of {it $c$-dense, $c$-closed} monomorphisms. ...
In this paper, we consider a general integral operator $G_n(z).$ The main object of the present paper is to study some properties of this integral operator on the classes $mathcal{S}^{*}(alpha),$ $mathcal{K}(alpha),$ $mathcal{M}(beta),$ $mathcal{N}(beta)$ and $mathcal{KD}(mu,beta).$
In this paper we characterize the left Jordan derivations on Banach algebras. Also, it is shown that every bounded linear map $d:mathcal Ato mathcal M$ from a von Neumann algebra $mathcal A$ into a Banach $mathcal A-$module $mathcal M$ with property that $d(p^2)=2pd(p)$ for every projection $p$ in $mathcal A$ is a left Jordan derivation.
let $mathcal{a}$ be a $c^*$-algebra and $z(mathcal{a})$ the center of $mathcal{a}$. a sequence ${l_{n}}_{n=0}^{infty}$ of linear mappings on $mathcal{a}$ with $l_{0}=i$, where $i$ is the identity mapping on $mathcal{a}$, is called a lie higher derivation if $l_{n}[x,y]=sum_{i+j=n} [l_{i}x,l_{j}y]$ for all $x,y in mathcal{a}$ and all $ngeqslant0$. we show that ${l_{n}}_{n...
Abstract There may be seven hadronic molecular states. We construct their corresponding interpolating currents and calculate masses decay constants using QCD sum rules. Based on these results, we relative production rates in \Lambda_b^0 decays current algebra, that is, {\cal{B}}(\Lambda_b^0 \to P_c K^-):{\cal{B}}(\Lambda_b^0 P_c^\prime K^-) , where are ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید