نتایج جستجو برای: neural network approximation

تعداد نتایج: 1008466  

Journal: :JCP 2012
Hui Hu Peng Guo

The paper presents a direct adaptive tracking control scheme for a class of matched SISO affine nonlinear uncertain systems with zero dynamic using neural network. Through neural network approximation, neural network is used as the emulator of the unknown ideal controller. A quadratic cost function of the error between the unknown ideal controller and the used neural network controller is minim...

2018
Massimo Fornasier Jan Vyb'iral Ingrid Daubechies

We address the uniform approximation of sums of ridge functions ∑ m i=1 gi(ai · x) on R, representing the shallowest form of feed-forward neural network, from a small number of query samples, under mild smoothness assumptions on the functions gi’s and near-orthogonality of the ridge directions ai’s. The sample points are randomly generated and are universal, in the sense that the sampled querie...

2009
J. Kumaran

This paper introduces a flexible neural tree (FNT) with necessary number of hidden units and is generated initially as a flexible multi-layer feed-forward neural network evolved using an evolutionary procedure and also considers the approximation of sufficiently smooth multivariable function with a multilayer perceptron. For a given neural tree with approximation order, explicit formulas for th...

2013
Schuyler Eldridge Florian Raudies Ajay Joshi

Neural networks can be used as function approximators to improve the energy efficiency, performance, and fault-tolerance of traditional computer architectures. To maximize these improvements the granularity of the function must be as large as possible. This work-inprogress abstract explores the lower limits of neural network function approximation by replacing individual floating point multipli...

Journal: :فیزیک زمین و فضا 0
علیرضا حاجیان مربی، گروه فیزیک، دانشگاه آزاد اسلامی واحد نجف آباد، ایران وحید ابراهیم زاده اردستانی دانشیار، گروه فیزیک زمین، مؤسسة ژئوفیزیک دانشگاه تهران و قطب علمی مهندسی نقشه برداری و مقابله با سوانح طبیعی، تهران، ایران کار لوکاس استاد، دانشکده برق وکامپیوتر دانشگاه تهران وقطب علمی کنترل وپردازش هوشمند ،تهران،ایران

the method of artificial neural network is used as a suitable tool for intelligent interpretation of gravity data in this paper. we have designed a hopfield neural network to estimate the gravity source depth. the designed network was tested by both synthetic and real data. as real data, this artificial neural network was used to estimate the depth of a qanat (an underground channel) located at...

Journal: :تحقیقات آب و خاک ایران 0
ایمان جوادزرین کارشناس ارشد، گروه مهندسی علوم خاک، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران. بابک متشرع زاده دانشیار گروه مهندسی علوم خاک، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

the aim followed in this study was to compare the performance of multiple regression vs neural network models to predict the activity of antioxidant enzymes super oxide dismutase (sod), cat alase (cat), ascorbate pero xidase (apx) and peroxidase (pox) in the shoots of wheat (triticum aestivum), alvand cultivar in a soil polluted with cadmium. the treatments consisted of four levels of cadmium (...

Journal: :Research Bulletin of the National Technical University of Ukraine "Kyiv Politechnic Institute" 2018

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید