نتایج جستجو برای: nonnegative signed total roman dominating function

تعداد نتایج: 1969687  

2013
S. Akbari A. Norouzi - Fard A. Rezaei R. Rotabi S. Sabour

Let G be a graph with the vertex set V (G) and edge set E(G). A function f : E(G) → {−1,+1} is said to be a signed star dominating function ofG if ∑ e∈EG(v) f(e) ≥ 1, for every v ∈ V (G), where EG(v) = {uv ∈ E(G) |u ∈ V (G)}. The minimum of the values of ∑ e∈E(G) f(e), taken over all signed star dominating functions f on G is called the signed star domination number of G and is denoted by γss(G...

Journal: :transactions on combinatorics 2014
maryam atapour sepideh norouzian seyed mahmoud sheikholeslami

a function $f:v(g)rightarrow {-1,0,1}$ is a {em minusdominating function} if for every vertex $vin v(g)$, $sum_{uinn[v]}f(u)ge 1$. a minus dominating function $f$ of $g$ is calleda {em global minus dominating function} if $f$ is also a minusdominating function of the complement $overline{g}$ of $g$. the{em global minus domination number} $gamma_{g}^-(g)$ of $g$ isdefined as $gamma_{g}^-(g)=min{...

‎‎Let $G=(V‎, ‎E)$ be a simple graph with vertex set $V$ and edge set $E$‎. ‎A {em mixed Roman dominating function} (MRDF) of $G$ is a function $f:Vcup Erightarrow {0,1,2}$ satisfying the condition that every element $xin Vcup E$ for which $f(x)=0$ is adjacent‎‎or incident to at least one element $yin Vcup E$ for which $f(y)=2$‎. ‎The weight of an‎‎MRDF $f$ is $sum _{xin Vcup E} f(x)$‎. ‎The mi...

Journal: :Discrete Applied Mathematics 2009
Dirk Meierling Lutz Volkmann Stephan Zitzen

Let G be a finite and simple graph with vertex set V (G), and let f : V (G) → {−1, 1} be a two-valued function. If ∑ x∈N[v] f (x) ≥ 1 for each v ∈ V (G), where N[v] is the closed neighborhood of v, then f is a signed dominating function on G. A set {f1, f2, . . . , fd} of signed dominating functions on Gwith the property that ∑d i=1 fi(x) ≤ 1 for each x ∈ V (G), is called a signed dominating fa...

Journal: :Australasian J. Combinatorics 2008
Hosein Karami Seyed Mahmoud Sheikholeslami Abdollah Khodkar

The open neighborhood NG(e) of an edge e in a graph G is the set consisting of all edges having a common end-vertex with e and its closed neighborhood is NG[e] = NG(e) ∪ {e}. Let f be a function on E(G), the edge set of G, into the set {−1, 1}. If ∑x∈NG[e] f(x) ≥ 1 for at least a half of the edges e ∈ E(G), then f is called a signed edge majority dominating function of G. The minimum of the val...

For any integer $kgeq 1$ and any graph $G=(V,E)$ with minimum degree at least $k-1$‎, ‎we define a‎ ‎function $f:Vrightarrow {0,1,2}$ as a Roman $k$-tuple dominating‎ ‎function on $G$ if for any vertex $v$ with $f(v)=0$ there exist at least‎ ‎$k$ and for any vertex $v$ with $f(v)neq 0$ at least $k-1$ vertices in its neighborhood with $f(w)=2$‎. ‎The minimum weight of a Roman $k$-tuple dominatin...

Journal: :Discussiones Mathematicae Graph Theory 2013
Mustapha Chellali Nader Jafari Rad

A Roman dominating function (RDF) on a graphG = (V,E) is a function f : V −→ {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF is the value f(V (G)) = ∑ u∈V (G) f(u). An RDF f in a graph G is independent if no two vertices assigned positive values are adjacent. The Roman domination number γR(G)...

Journal: :Australasian J. Combinatorics 2017
Alawi Alhashim Wyatt J. Desormeaux Teresa W. Haynes

The complementary prism GG of a graph G is formed from the disjoint union of G and its complement G by adding the edges of a perfect matching between the corresponding vertices of G and G. A Roman dominating function on a graph G = (V,E) is a labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 is adjacent to a vertex with label 2. The Roman domination number γR(G) ofG is the mini...

Journal: :Bulletin of the Malaysian Mathematical Sciences Society 2021

Let $$w=(w_0,w_1, \dots ,w_l)$$ be a vector of nonnegative integers such that $$ w_0\ge 1$$ . G graph and N(v) the open neighbourhood $$v\in V(G)$$ We say function $$f: V(G)\longrightarrow \{0,1,\dots ,l\}$$ is w-dominating if $$f(N(v))=\sum _{u\in N(v)}f(u)\ge w_i$$ for every vertex v with $$f(v)=i$$ The weight f defined to $$\omega (f)=\sum _{v\in V(G)} f(v)$$ Given any pair adjacent vertices...

2011
S. M. Sheikholeslami L. Volkmann

LetD = (V,A) be a finite and simple digraph. A Roman dominating function (RDF) on a digraph D is a labeling f : V (D) → {0, 1, 2} such that every vertex with label 0 has a in-neighbor with label 2. The weight of an RDF f is the value ω(f) = ∑ v∈V f(v). The Roman domination number of a digraph D, denoted by γR(D), equals the minimum weight of an RDF on D. In this paper we present some sharp boun...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید