We consider linearly independent families of Hermitian matrices {A1, . . . , Am} so thatWk(A) is convex. It is shown that m can reach the upper bound 2k(n− k) + 1. A key idea in our study is relating the convexity of Wk(A) to the problem of constructing rank k orthogonal projections under linear constraints determined by A. The techniques are extended to study the convexity of other generalized...