نتایج جستجو برای: pamp triggered immunity
تعداد نتایج: 138583 فیلتر نتایج به سال:
Pattern recognition receptors (PRRs) and nucleotide-binding domain and leucine-rich repeat (LRR)-containing proteins (NLRs) initiate pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), respectively, each associated with the activation of an overlapping set of defence genes. The regulatory mechanism behind this convergence of PTI- and ETI-mediated defence gene induction remai...
Phytophthora and other oomycetes secrete a large number of putative host cytoplasmic effectors with conserved FLAK motifs following signal peptides, termed crinkling and necrosis inducing proteins (CRN), or Crinkler. Here, we first investigated the evolutionary patterns and mechanisms of CRN effectors in Phytophthora sojae and compared them to two other Phytophthora species. The genes encoding ...
Pathogens induce pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) in plants. PAMPs are microbial molecules recognized by host plants as nonself signals, whereas pathogen effectors are evolved to aid in parasitism but are sometimes recognized by specific intracellular resistance proteins. In the absence of detectable ETI determining clas...
Plant-pathogen interactions involve sophisticated action and counteraction strategies from both parties. Plants can recognize pathogen derived molecules, such as conserved pathogen associated molecular patterns (PAMPs) and effector proteins, and subsequently activate PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI), respectively. However, pathogens can evade such recognitions...
Plants detect and respond to pathogen invasion with membrane-localized pattern recognition receptors (PRRs), which recognize pathogen-associated molecular patterns (PAMPs) and activate downstream immune responses. Here we report that Arabidopsis thaliana LORELEI-LIKE GPI-ANCHORED PROTEIN 1 (LLG1), a coreceptor of the receptor-like kinase FERONIA, regulates PRR signaling. In a forward genetic sc...
Plants, unlike animals, lack specialized mobile immune cells, so they do not have an adaptive system. Instead, plants can launch specific, self-tolerant responses and establish memory. Plants possess defense mechanisms that efficiently detect ward off potentially dangerous microorganisms. These start with multiple signalling processes responsible for sensation, recognition, signal collection co...
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved modules among eukaryotic species that range from yeast, plants, flies to mammals. In eukaryotic cells, reactive oxygen species (ROS) has both physiological and toxic effects. Both MAPK cascades and ROS signaling are involved in plant response to various biotic and abiotic stresses. It has been observed that not only c...
The evolution of the plant immune response has culminated in a highly effective defense system that is able to resist potential attack by microbial pathogens. The primary immune response is referred to as PAMP-triggered immunity (PTI) and has evolved to recognize common features of microbial pathogens. In the coevolution of host-microbe interactions, pathogens acquired the ability to deliver ef...
Plant disease resistance can be seen as a process of a dual nature: both qualitative and quantitative.The nature of non-self molecules perceived by plants has led to the depiction of plant immunity as a two-layer defence system. The first layer is mediated by cell surface and intracellular pattern recognition receptors (PRRs) which perceive conserved microbial elicitors, termed pathogenassociat...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید