نتایج جستجو برای: quadratic t search method

تعداد نتایج: 2518227  

2017
Hao Hu Renata Sotirov

The quadratic shortest path problem is the problem of finding a path in a directed graph such that the sum of interaction costs over all pairs of arcs on the path is minimized. We derive several semidefinite programming relaxations for the quadratic shortest path problem with a matrix variable of order m + 1, where m is the number of arcs in the graph. We use the alternating direction method of...

2017
Voot Tangkaratt Herke van Hoof Simone Parisi Gerhard Neumann Jan Peters Masashi Sugiyama

Direct contextual policy search methods learn to improve policy parameters and simultaneously generalize these parameters to different context or task variables. However, learning from high-dimensional context variables, such as camera images, is still a prominent problem in many real-world tasks. A naive application of unsupervised dimensionality reduction methods to the context variables, suc...

Journal: :SIAM Journal on Optimization 2008
Richard H. Byrd Frank E. Curtis Jorge Nocedal

We present an algorithm for large-scale equality constrained optimization. The method is based on a characterization of inexact sequential quadratic programming (SQP) steps that can ensure global convergence. Inexact SQP methods are needed for large-scale applications for which the iteration matrix cannot be explicitly formed or factored and the arising linear systems must be solved using itera...

Journal: :Math. Program. 2009
Mikhail V. Solodov

Usual global convergence results for sequential quadratic programming (SQP) algorithms with linesearch rely on some a priori assumptions about the generated sequences, such as boundedness of the primal sequence and/or of the dual sequence and/or of the sequence of values of a penalty function used in the linesearch procedure. Different convergence statements use different combinations of assump...

2006
Richard H. Byrd Jorge Nocedal Richard A. Waltz

This paper reviews, extends and analyzes a new class of penalty methods for nonlinear optimization. These methods adjust the penalty parameter dynamically; by controlling the degree of linear feasibility achieved at every iteration, they promote balanced progress toward optimality and feasibility. In contrast with classical approaches, the choice of the penalty parameter ceases to be a heuristi...

Journal: :SIAM Journal on Optimization 2004
Xinwei Liu Jie Sun

We present a primal-dual interior point algorithm of line-search type for nonlinear programs, which uses a new decomposition scheme of sequential quadratic programming. The algorithm can circumvent the convergence difficulties of some existing interior point methods. Global convergence properties are derived without assuming regularity conditions. The penalty parameter ρ in the merit function i...

2015
A. F. Izmailov M. V. Solodov

We consider sequential quadratic programming methods (SQP) globalized by linesearch for the standard exact penalty function. It is well known that if the Hessian of the Lagrangian is used in SQP subproblems, the obtained direction may not be of descent for the penalty function. The reason is that the Hessian need not be positive definite, even locally, under any natural assumptions. Thus, if a ...

In this paper, we propose an inexact alternating direction method with square quadratic proximal  (SQP) regularization for  the structured variational inequalities. The predictor is obtained via solving SQP system  approximately  under significantly  relaxed accuracy criterion  and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...

2006
B. DÜRING

Our goal is to identify the volatility function in Dupire’s equation from given option prices. Following an optimal control approach in a Lagrangian framework, we propose a globalized sequential quadratic programming (SQP) algorithm with a modified Hessian – to ensure that every SQP step is a descent direction – and implement a line search strategy. In each level of the SQP method a linear–quad...

Journal: :SIAM Journal on Optimization 2013
Philip E. Gill Daniel P. Robinson

Sequential quadratic programming (SQP) methods are a popular class of methods for nonlinearly constrained optimization. They are particularly effective for solving a sequence of related problems, such as those arising in mixed-integer nonlinear programming and the optimization of functions subject to differential equation constraints. Recently, there has been considerable interest in the formul...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید