This article concerns the existence of multiple non-radial positive solutions L<sup>2</sup>-constrained problem $$\displaylines{-\Delta{u}-Q(\varepsilon x)|u|^{p-2}u=\lambda{u},\quad \text{in }\mathbb{R}^N, \\ \int_{\mathbb{R}^N}|u|^2dx=1,}$$ where \(Q(x)\) is a radially symmetric function, &epsilon;&gt;0 small parameter, \(N\geq 2\), and \(p \in (2, 2+4/N)\) assumed to be m...