نتایج جستجو برای: radiomic prediction mri

تعداد نتایج: 357714  

2017
Patrick Grossmann Olya Stringfield Nehme El-Hachem Marilyn M Bui Emmanuel Rios Velazquez Chintan Parmar Ralph Th Leijenaar Benjamin Haibe-Kains Philippe Lambin Robert J Gillies Hugo Jwl Aerts

Medical imaging can visualize characteristics of human cancer noninvasively. Radiomics is an emerging field that translates these medical images into quantitative data to enable phenotypic profiling of tumors. While radiomics has been associated with several clinical endpoints, the complex relationships of radiomics, clinical factors, and tumor biology are largely unknown. To this end, we analy...

Journal: :International Journal of Radiation Oncology*Biology*Physics 2020

2018
Doo-Sik Kong Junhyung Kim Gyuha Ryu Hye-Jin You Joon Kyung Sung Yong Hee Han Hye-Mi Shin In-Hee Lee Sung-Tae Kim Chul-Kee Park Seung Hong Choi Jeong Won Choi Ho Jun Seol Jung-Il Lee Do-Hyun Nam

Quantitative imaging biomarkers have increasingly emerged in the field of research utilizing available imaging modalities. We aimed to identify good surrogate radiomic features that can represent genetic changes of tumors, thereby establishing noninvasive means for predicting treatment outcome. From May 2012 to June 2014, we retrospectively identified 65 patients with treatment-naïve glioblasto...

2016
Islam Hassan Aikaterini Kotrotsou Ali Shojaee Bakhtiari Ginu A. Thomas Jeffrey S. Weinberg Ashok J. Kumar Raymond Sawaya Markus M. Luedi Pascal O. Zinn Rivka R. Colen

Individual analysis of functional Magnetic Resonance Imaging (fMRI) scans requires user-adjustment of the statistical threshold in order to maximize true functional activity and eliminate false positives. In this study, we propose a novel technique that uses radiomic texture analysis (TA) features associated with heterogeneity to predict areas of true functional activity. Scans of 15 right-hand...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید