نتایج جستجو برای: rassias stability
تعداد نتایج: 299884 فیلتر نتایج به سال:
A mapping f : M → N between Hilbert C∗-modules approximately preserves the inner product if ‖〈f(x), f(y)〉 − 〈x, y〉‖ ≤ φ(x, y), for an appropriate control function φ(x, y) and all x, y ∈ M. In this paper, we extend some results concerning the stability of the orthogonality equation to the framework of Hilbert C∗modules on more general restricted domains. In particular, we investigate some asympt...
Abstract: We introduce some fuzzy set-valued functional equations, i.e. the generalized Cauchy type (in n variables), the Quadratic type, the Quadratic-Jensen type, the Cubic type and the Cubic-Jensen type fuzzy set-valued functional equations and discuss the Hyers-Ulam-Rassias stability of the above said functional equations. These results can be regarded as an important extension of stability...
In this paper, we studied the Hyers–Ulam–Rassias stability of Hermite’s differential equation, using Pachpatte’s inequality. We compared our results with those obtained by Blaga et al. Our estimation for zx−yx, where z is an approximate solution and y exact was better than that authors previously mentioned, in some parts domain, especially a neighborhood origin.
a unital $c^*$ -- algebra $mathcal a,$ endowed withthe lie product $[x,y]=xy- yx$ on $mathcal a,$ is called a lie$c^*$ -- algebra. let $mathcal a$ be a lie $c^*$ -- algebra and$g,h:mathcal a to mathcal a$ be $bbb c$ -- linear mappings. a$bbb c$ -- linear mapping $f:mathcal a to mathcal a$ is calleda lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
A classical question in the theory of functional equations is “when is it true that a mapping, which approximately satisfies a functional equation, must be somehow close to an exact solution of the equation?” Such a problem, called a stability problem of the functional equation, was formulated by Ulam 1 in 1940. In the next year, Hyers 2 gave a partial solution of Ulam’s problem for the case of...
In this paper, we study Hyers–Ulam and generalized Hyers–Ulam–Rassias stability of a system hyperbolic partial differential equations using Gronwall’s lemma Perov’s theorem.
In this paper, we prove the Hyers-Ulam stability of the symmetric functionalequation $f(ph_1(x,y))=ph_2(f(x), f(y))$ in random normed spaces. As a consequence, weobtain some random stability results in the sense of Hyers-Ulam-Rassias.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید