نتایج جستجو برای: rbf for july
تعداد نتایج: 10370000 فیلتر نتایج به سال:
Radical Basis Function (RBF) networks have been widely used in time series prediction because of their simplicity, robustness, good approximation and generalization ability. However, it is still rather difficult to select the number and locations of the hidden units of the RBF network appropriately for a specific time series prediction problem. In this paper, the Generalized RBF networks have b...
Among the neural network models RBF(Radial Basis Function) network seems to be quite effective for a pattern recognition task such as handwritten numeral recognition since it is extremely flexible to accommodate various and minute variations in data. Recently we obtained a good recognition rate for handwritten numerals by using an RBF network. In this paper we show how to design an RBF network ...
The circuit-field coupled model is very accurate but it is computationally inefficient in studying the output performance of brushless dc motors. In order to resolve the problem, an estimation strategy based on an integrated radial basis function (RBF) network is proposed in this paper. The strategy introduces new conceptions of the network group that are being realized by three steps, namely: ...
Radial basis function (RBF) approximation, is a new extremely powerful tool that is promising for high-dimensional problems, such as those arising from pricing of basket options using the Black-Scholes partial differential equation. The main problem for RBF methods have been ill-conditioning as the RBF shape parameter becomes small, corresponding to flat RBFs. This thesis employs a recently dev...
To seek optimal network parameters of Radial Basis Function (RBF) Neural Network and improve the accuracy of this method on estimation of soil property space, this study utilizes genetic algorithm to optimize three network parameters of RBF Neural Network including the number of hidden layer nodes, expansion speed and root-mean-square error. Then, based on optimized RBF Neural Network, spatial ...
To test the effect of insulin on renal perfusion and the participation of NO and PG as mediators of this response, renal blood flow (RBF) was measured in sheep (n = 8) implanted with ultrasonic flow probes around renal arteries and with a systemic arterial pressure (SAP, n = 4) telemetry device. Three protocols were performed: 1) RBF and SAP were recorded (0800 to 1800 h) in fed and fasted shee...
ICE is a new incremental construction algorithm of a hybrid system for continuous learning tasks. The basis of the hybrid system is a radial basis function (RBF) network layer. The second layer consists of local models. The two layers are closely combined with a strong interaction. For example information from the model-layer is used by the RBF-layer to decide if new RBF-neurons are needed and ...
We present a method of modifyiog the structure of radial basis function (RBF) network to work with nonstationary series that exhibit homogeneous nonstationary behavior. In the original RBF network, the hidden node’s function is to sense the trajectory of the time series and to respond when there is a strong correlation between the input pattern and the hidden node’s center. This type of respons...
An important problem in engineering is the identification of nonlinear systems, among them radial basis function neural networks (RBF-NN) using Gaussian activation functions models, which have received particular attention due to their potential to approximate nonlinear behavior. Several design methods have been proposed for choosing the centers and spread of Gaussian functions and training the...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید