نتایج جستجو برای: ricci semisymmetric
تعداد نتایج: 4973 فیلتر نتایج به سال:
1 Contents Applications of Hamilton's Compactness Theorem for Ricci flow Peter Topping 1 Applications of Hamilton's Compactness Theorem for Ricci flow 3 Overview 3 Background reading 4 Lecture 1. Ricci flow basics – existence and singularities 5 1.1. Initial PDE remarks 5 1.2. Basic Ricci flow theory 6 Lecture 2. Cheeger-Gromov convergence and Hamilton's compactness theorem 9 2.1. Convergence a...
In this paper, we extend the general maximum principle in [NT3] to the time dependent Lichnerowicz heat equation on symmetric tensors coupled with the Ricci flow on complete Riemannian manifolds. As an application we exhibit complete Riemannian manifolds with bounded nonnegative sectional curvature of dimension greater than three such that the Ricci flow does not preserve the nonnegativity of t...
This paper presents an improved Euclidean Ricci flow method for spherical parameterization. We subsequently invent a scale space processing built upon Ricci energy to extract robust surface features for accurate surface registration. Since our method is based on the proposed Euclidean Ricci flow, it inherits the properties of Ricci flow such as conformality, robustness and intrinsicalness, faci...
Einstein manifolds are trivial examples of gradient Ricci solitons with constant potential function and thus they are called trivial Ricci solitons. In this paper, we prove two characterizations of compact shrinking trivial Ricci solitons. M.S.C. 2010: 53C25.
In this note we discuss the fundamental groups and diameters of positively Ricci curved n-manifolds. We use a method combining the results about equivarient Hausdorff convergence developed by Fukaya and Yamaguchi with the Ricci version of splitting theorem by Cheeger and Colding to give new information on the topology of compact manifolds with positive Ricci curvature. Moreover, we also obtain ...
The three-dimensional Heisenberg group H3 has three left-invariant Lorentz metrics g1 , g2 and g3 as in [R92] . They are not isometric each other. In this paper, we characterize the left-invariant Lorentzian metric g1 as a Lorentz Ricci soliton. This Ricci soliton g1 is a shrinking non-gradient Ricci soliton. Likewise we prove that the isometry group of flat Euclid plane E(2) has Lorentz Ricci ...
Introduction. In [5], J. Milnor cited "understanding the Ricci tensor Rik = J^ Rt'kl 9J as a fundamental problem of present-day mathematics. A basic issue, then, is to determine which symmetric covariant tensors of rank two can be Ricci tensors of Riemannian metrics. The definition of Ricci curvature casts the problem of finding a metric g which realizes a given Ricci curvature R as one of solv...
For a submanifold Σ ⊂ R Belkin and Niyogi showed that one can approximate the Laplacian operator using heat kernels. Using a definition of coarse Ricci curvature derived by iterating Laplacians, we approximate the coarse Ricci curvature of submanifolds Σ in the same way. More generally, on any metric measure we are able to approximate a 1-parameter family of coarse Ricci functions that include ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید