نتایج جستجو برای: rubisco

تعداد نتایج: 1869  

2016
Maureen R. Hanson Myat T. Lin A. Elizabete Carmo-Silva Martin A.J. Parry

Photosynthesis in C3 plants is limited by features of the carbon-fixing enzyme Rubisco, which exhibits a low turnover rate and can also react with O2, leading to photorespiration. In cyanobacteria, bacterial microcompartments known as carboxysomes improve photosynthetic efficiency by concentrating CO2 near Rubisco. Thus transferring the carbon-concentrating mechanism from cyanobacteria to C3 pl...

2010
A. Elizabete Carmo-Silva Alfred J. Keys P. John Andralojc Stephen J. Powers M. Celeste Arrabaça Martin A. J. Parry

In C4 plants, water deficit may decrease photosynthetic CO2 assimilation independently of changes in stomatal conductance, suggesting decreased turnover by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The activity and biochemistry of Rubisco was studied in three different C4 grasses: Paspalum dilatatum, Cynodon dactylon, and Zoysia japonica. The objectives were to characterize the...

Journal: :Plant physiology 1987
J L Prioul A Reyss

The transfer of Nicotiana tabacum plants grown in low light (60 micromoles quanta per square meter per second) to higher light (360 micromoles quanta per square meter per second) was previously shown to induce adaptive stimulation of photosynthetic capacities. The variations of ribulose bisphosphate carboxylase/oxygenase (RubisCo) expression in mature leaves was examined as a result of this acc...

2018
Anna Vitlin Gruber Leila Feiz

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step in the Calvin-Benson cycle, which transforms atmospheric carbon into a biologically useful carbon source. The slow catalytic rate of Rubisco and low substrate specificity necessitate the production of high levels of this enzyme. In order to engineer a more efficient plant Rubisco, we need to better unders...

Journal: :Annals of botany 2002
Martin A J Parry P John Andralojc Shahnaz Khan Peter J Lea Alfred J Keys

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity is modulated in vivo either by reaction with CO2 and Mg2+ to carbamylate a lysine residue in the catalytic site, or by the binding of inhibitors within the catalytic site. Binding of inhibitors blocks either activity or the carbamylation of the lysine residue that is essential for activity. At night, in many species, 2-carboxyar...

Journal: :Journal of bacteriology 1996
J M Hernandez S H Baker S C Lorbach J M Shively F R Tabita

The cbbL cbbS and cbbM genes of Thiobacillus denitrificans, encoding form I and form II ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), respectively, were found to complement a RubisCO-negative mutant of Rhodobacter sphaeroides to autotrophic growth. Endogenous T. denitrificans promoters were shown to function in R. sphaeroides, resulting in high levels of cbbL cbbS and cbbM expressi...

2015
Suresh Kumar

Rubisco is a very large, complex and one of the most abundant proteins in the world and comprises up to 50% of all soluble protein in plants. The activity of Rubisco, the enzyme that catalyzes CO2 assimilation in photosynthesis, is regulated by Rubisco activase (Rca). In the present study, we searched for hypothetical protein of Vitis vinifera which has putative Rubisco activase function. The A...

Journal: :Research in microbiology 2005
Hiroki Ashida Antoine Danchin Akiho Yokota

Genome analyses have revealed that the genomes of non-photosynthetic bacteria including Bacillus subtilis code for proteins similar to the large subunit of RuBisCO (called RuBisCO-like protein (RLP)). This raises a fundamental question as to their functional relationship to photosynthetic RuBisCO. Recently, we identified the RLP of B. subtilis as the 2,3-diketo-5-methylthiopentyl-1-phosphate en...

Journal: :Plant physiology 2012
Katia Wostrikoff Aimee Clark Shirley Sato Tom Clemente David Stern

In maize (Zea mays), Rubisco accumulates in bundle sheath but not mesophyll chloroplasts, but the mechanisms that underlie cell type-specific expression are poorly understood. To explore the coordinated expression of the chloroplast rbcL gene, which encodes the Rubisco large subunit (LS), and the two nuclear RBCS genes, which encode the small subunit (SS), RNA interference was used to reduce RB...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید