نتایج جستجو برای: semi discretization
تعداد نتایج: 162675 فیلتر نتایج به سال:
The Landau-Lifshitz equation (LLE) governing the flow of magnetic spin in a ferromagnetic material is a PDE with a noncanonical Hamiltonian structure. In this paper we derive a number of new formulations of the LLE as a partial differential equation on a multisymplectic structure. Using this form we show that the standard central spatial discretization of the LLE gives a semi-discrete multisymp...
The linear shallow water equations on the sphere are discretized on a quasi-uniform, geodesic, icosahedral Voronoi-Delaunay grid with a C-grid variable arrangement and semi-implicit time discretization. A finite volume discretization is employed for the continuity equation in conservation law form, using as control volumes either the hexagonal/pentagonal or the dual triangular cells. A geostrop...
Chatter vibrations strongly limit productivity in milling. Due to the presence of rotating parts with asymmetric stiffness and stability enhancement strategies which act through a periodic variation stiffness, there is growing interest estimating maps systems Linear Time Periodic dynamics together cutting excitation. Applying Exponentially Modulated test signals dynamic force equation represent...
Integration factor methods are a class of ‘‘exactly linear part’’ time discretization methods. In [Q. Nie, Y.-T. Zhang, R. Zhao, Efficient semi-implicit schemes for stiff systems, Journal of Computational Physics, 214 (2006) 521–537], a class of efficient implicit integration factor (IIF) methods were developed for solving systems with both stiff linear and nonlinear terms, arising from spatial...
Computing T-optimal designs via nested semi-infinite programming and twofold adaptive discretization
Abstract Modelling real processes often results in several suitable models. In order to be able distinguish, or discriminate, which model best represents a phenomenon, one is interested, e.g., so-called T-optimal designs. These consist of the (design) points from generally continuous design space at models deviate most each other under condition that they are fitted those points. Thus, T-criter...
We present a Ritz-Galerkin discretization on sparse grids using pre-wavelets, which allows to solve elliptic differential equations with variable coefficients for dimension d = 2, 3 and higher dimensions d > 3. The method applies multilinear finite elements. We introduce an efficient algorithm for matrix vector multiplication using a Ritz-Galerkin discretization and semi-orthogonality. This alg...
We present a higher order accurate discontinuous Galerkin finite element method for the simulation of linear free-surface gravity waves. The method uses the classical Runge-Kutta method for the time discretization of the free-surface equations and the discontinuous Galerkin method for the space discretization. In order to circumvent numerical instabilities arising from an asymmetric mesh a stab...
We present a direct discretization of the electronic Schrödinger equation. It is based on one-dimensional Meyer wavelets from which we build an anisotropic multiresolution analysis for general particle spaces by a tensor product construction. We restrict these spaces to the case of antisymmetric functions. To obtain finite-dimensional subspaces we first discuss semi-discretization with respect ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید