نتایج جستجو برای: sum connectivity index
تعداد نتایج: 532099 فیلتر نتایج به سال:
Let Tn denote the set of all unrooted and unlabeled trees with n vertices, and (i, j) a double-star. By assuming that every tree of Tn is equally likely, we show that the limiting distribution of the number of occurrences of the double-star (i, j) in Tn is normal. Based on this result, we obtain the asymptotic value of Randić index for trees. Fajtlowicz conjectured that for any connected graph ...
The m-connectivity index χα(G) of an organic molecule whose molecular graph is G is the sum of the weights (di1di2 ...dim+1) , where i1−i2− ...−im+1 runs over all paths of length m in G and di denotes the degree of vertex vi. We find upper bounds for χα(G) when m ≥ 1 and α ≥ −1 (α 6= 0) using the eigenvalues of the Laplacian matrix of an associated weighted graph.
We derived explicit formulae for the eccentric connectivity index and Wiener index of 2-dimensional square-octagonal TUC4C8(R) lattices with open and closed ends. New compression factors for both indices are also computed in the limit N-->∞.
The general Randić index Rα(G) of a (chemical) graph G, is defined as the sum of the weights (d(u)d(v))α of all edges uv of G, where d(u) denotes the degree of a vertex u in G and α an arbitrary real number, which is called the Randić index or connectivity index (or branching index) for α = −1/2 proposed by Milan Randić in 1975. The paper outlines the results known for the (general) Randić inde...
if $g$ is a connected graph with vertex set $v$, then the eccentric connectivity index of $g$, $xi^c(g)$, is defined as $sum_{vin v(g)}deg(v)ecc(v)$ where $deg(v)$ is the degree of a vertex $v$ and $ecc(v)$ is its eccentricity. in this paper we show some convergence in probability and an asymptotic normality based on this index in random bucket recursive trees.
In this research paper, we will compute the topological indices (degree based) such as ordinary generalized geometric-arithmetic (OGA) index, first and second Gourava indices, hyper-Gourava general Randic´ index R γ G ,</mo...
Let G be a simple connected graph and t be a given real number. The zero-order general Randić index αt(G) of G is defined as ∑ v∈V (G) d(v) t , where d(v) denotes the degree of v. In this paper, for any t , we characterize the graphs with the greatest and the smallest αt within two subclasses of connected unicyclic graphs on n vertices, namely, unicyclic graphs with k pendant vertices and unicy...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید