نتایج جستجو برای: tadmor
تعداد نتایج: 204 فیلتر نتایج به سال:
We present a new third-order, semidiscrete, central method for approximating solutions to multidimensional systems of hyperbolic conservation laws, convection-diffusion equations, and related problems. Our method is a high-order extension of the recently proposed second-order, semidiscrete method in [A. Kurgonov and E. Tadmor, J. Comput Phys., 160 (2000) pp. 241–282]. The method is derived inde...
The multi-dimensional Euler-Poisson system describes the dynamic behavior of many important physical flows, yet as a hyperbolic system its solution can blow up for some initial configurations. This paper strives to advance our understanding on the critical threshold phenomena through the study of a two-dimensional weakly restricted Euler-Poisson (WREP) system. This system can be viewed as an im...
The Tadmor type of entropy conservation formulation for the Euler equations and various skewsymmetric splittings of the inviscid flux derivatives are discussed. Numerical stability of high order central and Padé type (centered compact) spatial discretization is enhanced through the application of these formulations. Numerical test on a 2-D vortex convection problem indicates that the stability ...
The numerical method we consider is based on the nonstaggered central scheme proposed by Jiang, Levy, Lin, Osher, and Tadmor (SIAM J. Numer. Anal. 35, 2147(1998)) that was obtained by conversion of the standard central NT scheme to the nonstaggered mesh. The generalization we propose is connected with the numerical evaluation of the geometrical source term. The presented scheme is applied to th...
We consider weak solutions of (hyperbolic or hyperbolic-elliptic) systems of conservation laws in one-space dimension and their approximation by finite difference schemes in conservative form. The systems under consideration are endowed with an entropy-entropy flux pair. We introduce a general approach to construct second and third order accurate, fully discrete (in both space and time) entropy...
This work provides a description of the critical threshold phenomenon in multi-dimensional restricted Euler–Poisson (REP) equations, introduced in [H. Liu, E. Tadmor. Spectral dynamics of the velocity gradient field in restricted fluid flows, Comm. Math. Phys. 228 (2002) 435–466]. For three-dimensional REP equations, we identified both upper thresholds for the finite-time blow up of solutions a...
The hierarchical reconstruction (HR) [Liu, Shu, Tadmor and Zhang, SINUM ’07] has been successfully applied to prevent oscillations in solutions computed by finite volume, Runge-Kutta discontinuous Galerkin, spectral volume schemes for solving hyperbolic conservation laws. In this paper, we demonstrate that HR can also be combined with spectral/hp element method for solving hyperbolic conservati...
Bipolar semiconductor device 2D FDTD modelling suited to parallel computing is investigated in this paper. The performance of a second order explicit approximation, namely the Nessyahu-Tadmor scheme (NT2) associated with the decomposition domain method, are compared to a classical quasi-linear implicit one based on the Alternating Direction Implicit method (ADI). The comparison is performed bot...
We study the large-time behaviour of Eulerian systems augmented with non-local alignment. Such systems arise as hydrodynamic descriptions of agent-based models for self-organized dynamics, e.g. Cucker & Smale (2007 IEEE Trans. Autom. Control 52, 852-862. (doi:10.1109/TAC.2007.895842)) and Motsch & Tadmor (2011 J. Stat. Phys. 144, 923-947. (doi:10.1007/s10955-011-0285-9)) models. We prove that, ...
Abstract. The nonoscillatory central difference scheme of Nessyahu and Tadmor is a Godunovtype scheme for one-dimensional hyperbolic conservation laws in which the resolution of Riemann problems at the cell interfaces is bypassed thanks to the use of the staggered Lax–Friedrichs scheme. Piecewise linear MUSCL-type (monotonic upstream-centered scheme for conservation laws) cell interpolants and ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید