نتایج جستجو برای: time fractional potential kadomtsev
تعداد نتایج: 2825631 فیلتر نتایج به سال:
Abstract. In this work, it has been shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve time fractional generalized KdV of order 2q+1 and certain fractional PDEs. It is shown that exponential operators are an effective method for solving certain fractional linear equations with non-constant coefficients. It may be concluded that the com...
We present, for the first time, a Lagrangian multiform complete Kadomtsev-Petviashvili (KP) hierarchy -- single variational object that generates whole and encapsulates its integrability. By performing reduction on this multiform, we also obtain multiforms Gelfand-Dickey of hierarchies, comprising, amongst others, Korteweg-de Vries Boussinesq hierarchies.
in this paper, we study the boundary-value problem of fractional order dynamic equations on time scales, $$ ^c{delta}^{alpha}u(t)=f(t,u(t)),;;tin [0,1]_{mathbb{t}^{kappa^{2}}}:=j,;;1
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...
In recent years, there has been greater attempt to find numerical solutions of differential equations using wavelet's methods. The following method is based on vector forms of Haar-wavelet functions. In this paper, we will introduce one dimensional Haar-wavelet functions and the Haar-wavelet operational matrices of the fractional order integration. Also the Haar-wavelet operational matrices of ...
Fractional calculus, which has almost the same history as classic calculus, did not attract enough attention for a long time. However, in recent decades, fractional calculus and fractional differential equations become more and more popular because of its powerful potential applications. A large number of new differential equations (models) that involve fractional calculus are developed. These ...
In this paper, a new numerical method for solving fractional optimal control problems (FOCPs) is presented. The fractional derivative in the dynamic system is described in the Caputo sense. The method is based upon biorthogonal cubic Hermite spline multiwavelets approximations. The properties of biorthogonal multiwavelets are first given. The operational matrix of fractional Riemann-Lioville in...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید