نتایج جستجو برای: trigonometric b splines
تعداد نتایج: 907445 فیلتر نتایج به سال:
We present a construction of a re nable compactly supported vector of functions which is bi orthogonal to the vector of B splines of a given degree with multiple knots at the integers with prescribed multiplicity The construction is based on Hermite interpolatory subdivision schemes and on the relation between B splines and divided di erences The bi orthogonal vector of functions is shown to be...
What is now known as the Gibbs phenomenon was first observed in the context of truncated Fourier expansions, but other versions of it arise also in situations such as truncated integral transforms and for different interpolation methods. Radial basis functions (RBF) is a modern interpolation technique which includes both splines and trigonometric interpolations as special cases in 1-D, and it g...
Received (Day Month Year) Revised (Day Month Year) Communicated by (xxxxxxxxxx) Fractional B-splines are a natural extension of classical B-splines. In this short paper, we show their relations to fractional divided differences and fractional difference operators , and present a generalized Hermite-Genochi formula. This formula then allows the definition of a larger class of fractional B-splines.
This essay reviews those basic facts about (univariate) B-splines that are of interest in CAGD. The intent is to give a self-contained and complete development of the material in as simple and direct a way as possible. For this reason, the B-splines are defined via the recurrence relations, thus avoiding the discussion of divided differences which the traditional definition of a B-spline as a d...
Triangular B-splines are powerful and flexible in modeling a broader class of geometric objects defined over arbitrary, non-rectangular domains. Despite their great potential and advantages in theory, practical techniques and computational tools with triangular B-splines are less-developed. This is mainly because users have to handle a large number of irregularly distributed control points over...
We extend Schoenberg’s family of polynomial splines with uniform knots to all fractional degrees α > −1. These splines, which involve linear combinations of the one-sided power functions x+ = max(0, x) α, are α-Hölder continuous for α > 0. We construct the corresponding B-splines by taking fractional finite differences and provide an explicit characterization in both time and frequency domains....
s-dimensional generalized polynomials are linear combinations of functions forming an ECT-system on a compact interval with coefficients from R. ECT-spline curves in R are constructed by glueing together at interval endpoints generalized polynomials generated from different local ECT-systems via connection matrices. If they are nonsingular, lower triangular and totally positive there is a basis...
We propose a complex generalization of Schoenberg’s cardinal splines. To this end, we go back to the Fourier domain definition of the B-splines and extend it to complex-valued degrees. We show that the resulting complex B-splines are piecewise modulated polynomials, and that they retain most of the important properties of the classical ones: smoothness, recurrence, and two-scale relations, Ries...
The main goal of this paper is to present some generalizations of polynomial B-splines, which include exponential B-splines and the larger family of exponential pseudo-splines. We especially focus on their connections to subdivision schemes. In addition, we generalize a well-known result on the approximation order of exponential pseudo-splines, providing conditions to establish the approximatio...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید