نتایج جستجو برای: two dimensional nonlinear fuzzy fredholm integral equations of the second kind
تعداد نتایج: 22968109 فیلتر نتایج به سال:
Fredholm and Volterra nonlinear possibilistic integral equations In this paper we study the functional obtained from classical of second kind, by replacing there linear Lebesgue with integral.
In this paper, an efficient method is presented for solving two dimensional Fredholm and Volterra integral equations of the second kind. Chebyshev polynomials are applied to approximate a solution for these integral equations. This method transforms the integral equation to algebraic equations with unknown Chebyshev coefficients. The high accuracy of this method is verified through some numeric...
In this paper, numerical solution of linear Fredholm integral equations of the second kind is considered by two methods. The methods are developed by means of the Sinc-collocation method and shifted Chebyshev polynomial method. Some numerical examples are presented to illustrate the method. Numerical solution of linear Fredholm integral equations. 1. Introduction Many initial and boundary value...
the main purpose of this article is to present an approximate solution for the two-dimensional nonlinear volterra integral equations using legendre orthogonal polynomials. first, the two-dimensional shifted legendre orthogonal polynomials are defined and the properties of these polynomials are presented. the operational matrix of integration and the product operational matrix are introduced. th...
We consider a nonlinear Volterra-Fredholm integral equation NVFIE of the second kind. The Volterra kernel is time dependent, and the Fredholm kernel is position dependent. Existence and uniqueness of the solution to this equation, under certain conditions, are discussed. The block-byblock method is introduced to solve such equations numerically. Some numerical examples are given to illustrate o...
in this paper a linear fuzzy fredholm integral equation(ffie) with arbitrary fuzzy function input and symmetric triangular (fuzzy interval) output is considered. for each variable, output is the nearest triangular fuzzy number (fuzzy interval) to the exact fuzzy solution of (ffie).
this paper gives an ecient numerical method for solving the nonlinear systemof volterra-fredholm integral equations. a legendre-spectral method based onthe legendre integration gauss points and lagrange interpolation is proposedto convert the nonlinear integral equations to a nonlinear system of equationswhere the solution leads to the values of unknown functions at collocationpoints.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید