نتایج جستجو برای: zinc finger nuclease
تعداد نتایج: 105645 فیلتر نتایج به سال:
Zinc finger nucleases (ZFNs) have been successfully used for genome modification in various cell types and species. However, construction of an effective ZFN remained challenging. Previous studies all focused on obtaining specific zinc finger proteins (ZFPs) first via bacterial 2-hybrid approach, and then fusing selected ZFPs to FokI nuclease domain. These assembled ZFNs have high rate of faili...
Yeast two-hybrid (Y2H) methods are powerful tools for detecting protein-protein interactions. The traditional Y2H method has been widely applied to screen novel protein interactions since it was established two decades ago. The high false-positive rate of the traditional method drove the development of modified Y2H systems. Here, we describe a novel Y2H system using zinc-finger nucleases (ZFNs)...
Targeted gene addition to mammalian genomes is central to biotechnology, basic research and gene therapy. For example, gene targeting to the ROSA26 locus by homologous recombination in embryonic stem cells is commonly used for mouse transgenesis to achieve ubiquitous and persistent transgene expression. However, conventional methods are not readily adaptable to gene targeting in other cell type...
Zinc Finger Targeter (ZiFiT) is a simple and intuitive web-based tool that facilitates the design of zinc finger proteins (ZFPs) that can bind to specific DNA sequences. The current version of ZiFiT is based on a widely employed method of ZFP design, the 'modular assembly' approach, in which pre-existing individual zinc fingers are linked together to recognize desired target DNA sequences. Seve...
K-RBP is a KRAB-containing zinc finger protein with multiple zinc finger motifs and represses Kaposi's sarcoma-associated herpesvirus (KSHV) transactivator RTA-mediated transactivation of several viral lytic gene promoters, including the ORF57 promoter. Whether K-RBP binds DNA through its zinc fingers and the role of zinc finger domain in repressing gene expression are unclear. Here we report t...
Zinc finger nucleases (ZFNs) are powerful tools for gene therapy and genetic engineering. The high specificity and affinity of these chimeric enzymes are based on custom-designed zinc finger proteins (ZFPs). To improve the performance of existing ZFN technology, we developed an in vivo evolution-based approach to improve the efficacy of the FokI cleavage domain (FCD). After multiple rounds of c...
Engineered zinc finger nucleases (ZFN) are rapidly gaining popularity as a means to enhance the rate and specificity of DNA modifications in plant and animal cells. Repair-mediated gene modification by ZFN is driven by introducing DNA double-strand breaks via a nonspecific nuclease domain linked to a sequence-specific zinc finger nucleotide recognition domain. This review examines the use of ZF...
The selective degradation of mutated mitochondrial DNA (mtDNA) molecules is a potential strategy to re-populate cells with wild-type (wt) mtDNA molecules and thereby alleviate the defective mitochondrial function that underlies mtDNA diseases. Zinc finger nucleases (ZFNs), which are nucleases conjugated to a zinc-finger peptide (ZFP) engineered to bind a specific DNA sequence, could be useful f...
Proteins and other macromolecules that cross biological membranes have great potential as tools for research and next-generation therapeutics. Here, we describe two assays that effectively quantify the cytosolic localization of a number of previously reported peptides and protein domains. One assay, which we call GIGI (glucocorticoid-induced eGFP induction), is an amplified assay that informs o...
Transgenic mice carrying site-specific genome modifications (knockout, knock-in) are of vital importance for dissecting complex biological systems as well as for modeling human diseases and testing therapeutic strategies. Recent advances in the use of designer nucleases such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly in...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید