نتایج جستجو برای: نوسانگر hopf
تعداد نتایج: 9201 فیلتر نتایج به سال:
We determine when the Hopf vector fields on orientable real hypersurfaces (M, g) in complex space forms are minimal or harmonic. Furthermore, we determine when these vector fields give rise to harmonic maps from (M, g) to the unit tangent sphere bundle (T1M, gS). In particular, we consider the special case of Hopf hypersurfaces and of ruled hypersurfaces. The Hopf vector fields on Hopf hypersur...
A generalized oscillator algebra is proposed and the braided Hopf algebra structure for this generalized oscillator is investigated. Using the solutions for the braided Hopf algebra structure, two types of braided Fibonacci oscillators are introduced. This leads to two types of braided Biedenharn-Macfarlane oscillators as special cases of the Fibonacci oscillators. We also find the braided Hopf...
This is a brief survey of some recent developments in the study of infinite dimensional Hopf algebras which are either noetherian or have finite Gelfand-Kirillov dimension. A number of open questions are listed.
We consider a reaction-diffusion equation with Neumann boundary conditions and show that solutions to this problem may be obtained from a problem with periodic boundary conditions and equivariant under O(2) symmetry. We describe the solutions for Hopf bifurcation and mode interactions involving Hopf bifurcation, namely, steadystate/Hopf and Hopf/Hopf. Neumann boundary conditions constrain the s...
We give a universal construction of families of Hopf P-algebras for any Hopf operad P. As a special case, we recover the Connes-Kreimer Hopf algebra of rooted trees.
In recent years a Hopf algebraic structure underlying the process of renormalization in quantum field theory was found. It led to a Birkhoff factorization for (regularized) Hopf algebra characters, i.e. for Feynman rules. In this work we would like to show that this Birkhoff factorization finds its natural formulation in terms of a classical r-matrix, coming from a Rota-Baxter structure underly...
We define the notion of factorizable quasi-Hopf algebra by using a categorical point of view. We show that the Drinfeld double D(H) of any finite dimensional quasi-Hopf algebra H is factorizable, and we characterize D(H) when H itself is factorizable. Finally, we prove that any finite dimensional factorizable quasi-Hopf algebra is unimodular. In particular, we obtain that the Drinfeld double D(...
We describe and study a four parameters deformation of the two products and the coproduct of the Hopf algebra of plane posets. We obtain a family of braided Hopf algebras, which are generically self-dual. We also prove that in a particular case (when the second parameter goes to zero and the first and third parameters are equal), this deformation is isomorphic, as a self-dual braided Hopf algeb...
A C∞-Hopf algebra is a C∞-algebra which is also a convenient Hopf algebra with respect to the structure induced by the evaluations of smooth functions. We characterize those C∞-Hopf algebras which are given by the algebra C∞(G) of smooth functions on some compact Lie group G, thus obtaining an anti-isomorphism of the category of compact Lie groups with a subcategory of convenient Hopf algebras.
To any Hopf algebra H we associate two commutative Hopf algebras Hl1(H) and Hl2(H), which we call the lazy homology Hopf algebras of H . These Hopf algebras are built in such a way that they are “predual” to the lazy cohomology groups based on the so-called lazy cocycles. We establish two universal coefficient theorems relating the lazy cohomology to the lazy homology and we compute the lazy ho...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید