We investigate a conjecture of Paul Erdős, the last unsolved problem among those proposed in his landmark paper [2]. The conjecture states that there exists an absolute constant C > 0 such that, if v1, . . . , vn are unit vectors in a Hilbert space, then at least C 2 n of all ∈ {−1, 1} are such that | Pn i=1 ivi |≤ 1. We disprove the conjecture. For Hilbert spaces of dimension d > 2, the counte...