نتایج جستجو برای: almost paracontact metric manifold
تعداد نتایج: 305031 فیلتر نتایج به سال:
Let (M, g) be an oriented 4-dimensional Riemannian manifold (not necessarily compact). Due to the Hodge-star operator ⋆, we have a decomposition of the bivector bundle ∧2 TM = ∧+ ⊕ ∧− . Here ∧± is the eigen-subbundle for the eigenvalue ±1 of ⋆. The metric g on M induces a metric, denoted by < , >, on the bundle ∧2 TM . Let π : Z = S (∧+) −→ M be the sphere bundle; the fiber over a point m ∈ M p...
In this note we discuss conditions under which a linear connection on a manifold equipped with both a symmetric (Riemannian) and a skew-symmetric (almost-symplectic or Poisson) tensor field will preserve both structures. If (M, g) is a (pseudo-)Riemannian manifold, then classical results due to T. Levi-Civita, H. Weyl and E. Cartan [7] show that for any (1, 2) tensor field T i jk which is skew-...
It is shown that the Hermitian-symmetric space CP1 × CP1 × CP1 and the flag manifold F1,2 endowed with any left invariant metric admit no compatible integrable almost complex structures (even locally) different from the invariant ones. As an application it is proved that any stable harmonic immersion from F1,2 equipped with an invariant metric into an irreducible Hermitian symmetric space of co...
On one side, from the properties of Floer cohomology, invariant associated to a symplectic manifold, we define and study a notion of symplectic hyperbolicity and a symplectic capacity measuring it. On the other side, the usual notions of complex hyperbolicity can be straightforwardly generalized to the case of almost-complex manifolds by using pseudo-holomorphic curves. That’s why we study the ...
— Let X and Y be two smooth vector fields on a two-dimensional manifold M . If X and Y are everywhere linearly independent, then they define a Riemannian metric on M (the metric for which they are orthonormal) and they give to M the structure of metric space. If X and Y become linearly dependent somewhere on M , then the corresponding Riemannian metric has singularities, but under generic condi...
In this article, we characterize almost quasi-Yamabe solitons and gradient in context of three dimensional Kenmotsu manifolds. It is proven that if the metric a manifold admits an soliton with vector field $W$ then constant sectional curvature $-1$, but converse not true has been shown by concrete example, under restriction $\phi W\neq 0$. Next consider manifold.
In the present study, we considered 3-dimensional generalized (κ, μ)-contact metric manifolds. We proved that a 3-dimensional generalized (κ, μ)-contact metric manifold is not locally φ-symmetric in the sense of Takahashi. However such a manifold is locally φ-symmetric provided that κ and μ are constants. Also it is shown that if a 3-dimensional generalized (κ, μ) -contact metric manifold is Ri...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید