نتایج جستجو برای: andronov bifurcations
تعداد نتایج: 6089 فیلتر نتایج به سال:
The unfolding due to imperfections of a gluing bifurcation occurring in a periodically forced Taylor–Couette system is analyzed numerically. In the absence of imperfections, a temporal glide-reflection Z2 symmetry exists, and two global bifurcations occur within a small region of parameter space: a heteroclinic bifurcation between two saddle two-tori and a gluing bifurcation of three-tori. As t...
This paper investigates generic bifurcations from a D m-invariant equilibrium of a D m-symmetric dynamical system, for m = 3 or 4, near points of codimension-2 steady-state mode interactions. The center manifold is isomorphic to IR 3 or IR 4 and is non-irreducible. Depending on the group representation, in the unfolding of the linearization we nd: symmetry-breaking bifurcations to primary branc...
Saddle-node bifurcations arise frequently in solitary waves of diverse physical systems. Previously it was believed that solitary waves always undergo stability switching at saddle-node bifurcations, just as in finite-dimensional dynamical systems. Here we show that this is not true. For a large class of generalized nonlinear Schrödinger equations with real or complex potentials, we prove that ...
In this paper we extract and visualize the topological skeleton of two-parameter-dependent vector fields. This kind of vector data depends on two parameter dimensions, for instance physical time and a scale parameter. We show that two important classes of local bifurcations – fold and Hopf bifurcations – build line structures for which we present an approach to extract them. Furthermore we show...
spectral statistics, mixed systems, bifurcations For systems that are neither fully integrable nor fully chaotic, bifurcations of periodic orbits give rise to semiclassically emergent singularities in the fluctuating part N f1 of the energy-level counting function. The bifurcations dominate the spectral moments M m (h) = 〈 (N f1)2 m 〉 in the limit h? 0. We show that M m (h) ~ constant / h m , a...
this paper investigates the dynamics and stability properties of a discrete-time lotka-volterra type system. we first analyze stability of the fixed points and the existence of local bifurcations. our analysis shows the presence of rich variety of local bifurcations, namely, stable fixed points; in which population numbers remain constant, periodic cycles; in which population numbers oscillate amo...
A general class of prototype dynamical systems is introduced, which allows to study the generation of complex bifurcation cascades of limit cycles, including bifurcations breaking spontaneously a symmetry of the system, period doubling and homoclinic bifurcations, and transitions to chaos induced by sequences of limit cycle bifurcations. The prototype systems are adaptive, with friction forces ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید