نتایج جستجو برای: arens regularity
تعداد نتایج: 22300 فیلتر نتایج به سال:
Addressing a question of Gowers, we determine the order of the tower height for the partition size in a version of Szemerédi’s regularity lemma.
We show that a non-expansive action of a topological semigroup S on a metric space X is linearizable iff its orbits are bounded. The crucial point here is to prove that X can be extended by adding a fixed point of S, thus allowing application of a semigroup version of the Arens-Eells linearization, iff the orbits of S in X are bounded.
We prove a version of Szemerédi’s regularity lemma for subsets of a typical random set in F p . As an application, a result on the distribution of three-term arithmetic progressions in sparse sets is discussed.
Chvátal, Rödl, Szemerédi and Trotter [1] proved that the Ramsey numbers of graphs of bounded maximum degree are linear in their order. We prove that the same holds for 3-uniform hypergraphs. The main new tool which we prove and use is an embedding lemma for 3-uniform hypergraphs of bounded maximum degree into suitable 3-uniform ‘pseudo-random’ hypergraphs. keywords: hypergraphs; regularity lemm...
We prove a regularity lemma with respect to arbitrary Keisler measures μ on V , ν on W where the bipartite graph (V,W,R) is definable in a saturated structure M̄ and the formula R(x, y) is stable. The proof is rather quick, making use of local stability theory. The special case where (V,W,R) is pseudofinite, μ, ν are the counting measures, and M̄ is suitably chosen (for example a nonstandard mode...
In this note we discuss several combinatorial problems that can be addressed by the Regularity Method for hypergraphs. Based on recent results of Nagle, Schacht and the authors, we give here solutions to these problems. In particular, we prove the following: Let K (k) t be the complete kuniform hypergraph on t vertices and suppose an n-vertex k-uniform hypergraph H contains only o(n) copies of ...
For Φ,Ψ ∈ A′′, define 〈Φ Ψ, λ〉 = 〈Φ, Ψ · λ〉 (λ ∈ A′) , and similarly for ♦. Thus (A′′, ) and (A′′,♦) are Banach algebras each containingA as a closed subalgebra. The Banach algebra A is Arens regular if and ♦ coincide on A′′, and A is strongly Arens irregular if and ♦ coincide only on A. A subspace X of A′ is left-introverted if Φ · λ ∈ X whenever Φ ∈ A′′ and λ ∈ X . There has been a great deal...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید