نتایج جستجو برای: arima garch
تعداد نتایج: 7234 فیلتر نتایج به سال:
The U.S. Census Bureau has enhanced the X-12-ARIMA seasonal adjustment program by incorporating an improved automatic regARIMA model (regression model with ARIMA errors) selection procedure. Currently this procedure is available only in test version 0.3 of X-12ARIMA, but it will be released in a future version of the program. It is based on the automatic model selection procedure of TRAMO , an ...
The standardized precipitation index (SPI) was used to quantify the classification of drought in the Guanzhong Plain, China. The autoregressive integrated moving average (ARIMA) models were developed to fit and forecast the SPI series. Most of the selected ARIMA models are seasonal models (SARIMA). The forecast results show that the forecasting power of the ARIMA models increases with the incre...
ARIMA is a popular method to analyze stationary univariate time series data. There are usually three main stages to build an ARIMA model, including model identification, model estimation and model checking, of which model identification is the most crucial stage in building ARIMA models. However there is no method suitable for both ARIMA and SARIMA that can overcome the problem of local optima....
Drought forecasting plays a crucial role in drought mitigation actions. Thus, this research deals with linear stochastic models (autoregressive integrated moving average (ARIMA)) as a suitable tool to forecast drought. Several ARIMA models are developed for drought forecasting using the Standardized Precipitation Evapotranspiration Index (SPEI) in a hyper-arid climate. The results reveal that a...
Measurements of high-speed network traffic have shown that traffic data exhibits a high degree of self-similarity. Traditional traffic models such as AR and ARMA are not able to capture this long-range-dependence making them ineffective for the traffic prediction task. In this paper, we apply the fractional ARIMA (F-ARIMA) model to predict one-step-ahead traffic value at different time scales. ...
The research paper is devoted to developing a mathematical approach for dealing with time-varying parameters in rolling window logit models credit risk assessment. Forecasting coefficients yields better model accuracy than trivial of using computed past statistics the next time period. In this paper, new method scoring proposed, which aimed at computing default probability borrower. It was empi...
We propose a new model for volatility forecasting which combines the Generalized Dynamic Factor Model (GDFM) and the GARCH model. The GDFM, applied to a large number of series, captures the multivariate information and disentangles the common and the idiosyncratic part of each series of returns. In this financial analysis, both these components are modeled as a GARCH. We compare GDFM+GARCH and ...
The autoregressive conditional heteroskedasticity (ARCH) and generalized autoregressive conditional heteroskedasticity (GARCH) models take the dependency of the conditional second moments. The idea behind ARCH/GARCH model is quite intuitive. For ARCH models, past squared innovations describes the present squared volatility. For GARCH models, both squared innovations and the past squared volatil...
Nowadays many researchers use GARCH models to generate volatility forecasts. However, it is well known that volatility persistence, as indicated by the sum of the two parameters G1 and A1[1], in GARCH models is usually too high. Since volatility forecasts in GARCH models are based on these two parameters, this may lead to poor volatility forecasts. It has long been argued that this high persist...
This paper examines the forecasting performance of ARIMA and artificial neural networks model with published stock data obtained from New York Stock Exchange. The empirical results obtained reveal the superiority of neural networks model over ARIMA model. The findings further resolve and clarify contradictory opinions reported in literature over the superiority of neural networks and ARIMA mode...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید